

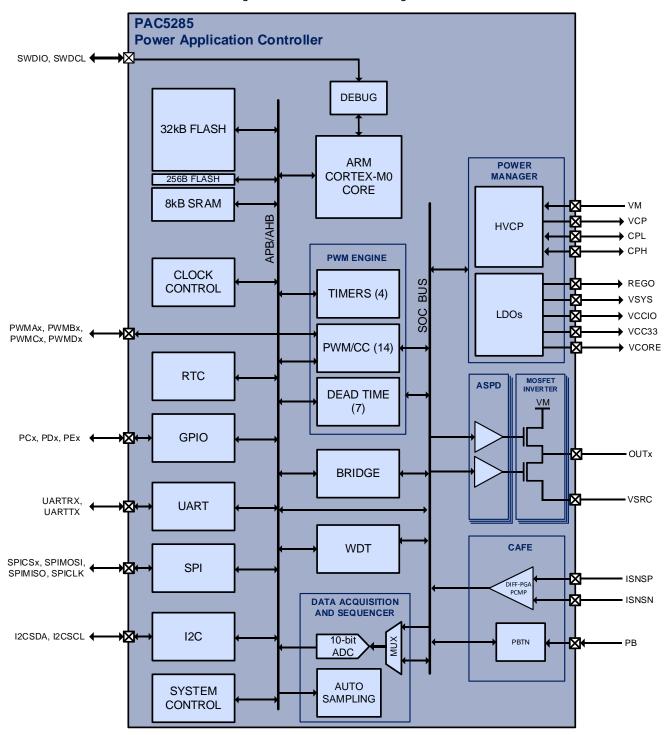
Product Overview

The Qorvo® PAC5285 is a 40V/20W BLDC Integrated Motor Controller and Driver with integrated FETs. To enable compact low-power BLDC motor applications, this device integrates a FLASH-programmable MCU, Power Management, Signal Conditioning and 3-Phase BLDC Inverter into a single product.

The PAC5285 contains an Arm® Cortex®-M0 with 32kB of FLASH and 8KB of SRAM and has access to several different analog and digital peripherals used for BLDC motor control and driving.

This device has a single 40V power supply input, which makes it ideal for 12V battery-powered applications. There is a charge pump DC/DC that converts the power supply input into an IC and inverter power supply. There are regulators for a 5V system supply, core and analog supplies as well.

The device also integrates a differential amplifier that may be used for sensing motor current for over-current protection and motor control. The inverter may be shut down during over-current, over-voltage, under-voltage and over-temperature events. There is also a power monitor that allows the ADC to sample all power supply rails internally.


This device contains 6 40V/300mΩ MOSFETs to support 3-phase BLDC motor applications.

The PAC5285 is packaged in a 6x6mm, 40-lead QFN package for compact low-power BLDC motors.

Functional Block Diagram

Figure 1 Architectural Block Diagram

Key Features

MCU

- 50MHz Arm® Cortex®-M0
 - o 32kB FLASH
 - 8kB SRAM
 - 256B INFO FLASH for manufacturing information
 - o 20 interrupts, 4 priority levels
- SWD programming interface
- Clock-gating for low-power operation

ADC

- 10-bit 1MSPS SAR ADC
- Dual 8-channel ADC sequencer

Timing Generators

- Four 16-bit PWM timers with up to 8 CCR output units each
- 24-bit SysTick count-down timer
- Watch-dog Timer (WDT)
- Real-time Clock (RTC)
- Two 24-bit General Purpose Timers

10

- 3.3V/5V configurable drive output
- 12 general-purpose IO
- Digital Input, digital output, analog ADC input
- Configurable weak pull-up or pull-down
- Configurable drive-strength (8mA or 16mA)
- Flexible interrupt controller

Communication Peripherals

- UART/SPI or I2C
- 8-bit UART, up to 1Mbps
- 3-wire or 4-wire SPI, master/slave
- I2C master/slave, 7b/10b

Power Manager

- Up to 40V supply input
- Charge Pump DC/DC
- 5V system supply
- Integrated LDOs for MCU core, analog
- Power and temperature monitor, warning and fault detection
- Low-Power Operation
 - 8µA total hibernate mode

Single-wire debugger (SWD)

Configurable Analog Front-End (CAFE™)

- Differential amplifier for motor current sense
- 2.5V ADC reference
- OC shutdown and programmable OC warning
- Hibernate push-button wake-up
- Power supply monitoring via ADC
- Integrated VM and VCP sensing without additional external components

Application Specific Power Drivers (ASPD™)

- "Break-before-make" hardware dead-time enforcement to prevent shoot-through
- Integrated level shifters and pre-drivers
- 6 integrated 40V/300mΩ Power MOSFETs for 3-phase BLDC motor applications
 - OC, UV protection

Packaging

- QFN 6x6mm 40-pin package
- Exposed pad for thermal management

Certifications

• $T_A = -40^{\circ}C$ to $105^{\circ}C$

Ordering Information

Orderable Part N	lumber	Description		
PAC5285-T		40V/20W BLDC Controller/Driver with Integrated FETs	3000-piece reel	

Table of Contents

Product Overview	1
Functional Block Diagram	2
Key Features	2
Ordering Information	3
Absolute Maximum Ratings	10
Recommended Operating Conditions	10
Power Manager	11
Features	11
Block Diagram	11
Functional Description	11
High-Voltage Charge Pump (HVCP)	12
Integrated VM Sensing	12
Linear Regulators	13
Power-up Sequence	14
Low-Power Modes	15
Power and Temperature Monitor	15
Voltage Reference	15
Electrical Characteristics	16
HVCP Electrical Characteristics	16
Linear Regulators Electrical Characteristics	17
Power Monitor Electrical Characteristics	17
Configurable Analog Front-End (CAFE)	18
Features	18
Block Diagram	18
Functional Description	18
Differential Amplifier (DA)	19
Over-Current Warnings and Faults	19
Push Button (PBTN)	19
ADC Analog Input	20
Temperature Protection	21
Electrical Characteristics	22
DA Electrical Characteristics	22
PB Electrical Characteristics	22

Temperature Protection Electrical Characteristics	22
Application Specific Power Drivers (ASPD)	23
Features	23
Block Diagram	23
Functional Description	24
Electrical Characteristics	24
ADC With Auto-Sampling Sequencer	25
Block Diagram	25
Functional Description	26
ADC	26
Auto-Sampling Sequencer	26
EMUX Control	26
Electrical Characteristics	27
Memory System	28
Features	28
Block Diagram	28
Functional Description	28
Program and Data FLASH	28
SRAM	28
Electrical Characteristics	29
Clock Control System	30
Features	30
Block Diagram	30
Functional Description	31
Free Running Clock (FRCLK)	31
Fast Clock (FCLK)	31
High-Speed Clock (HCLK)	31
Auxiliary Clock (ACLK)	31
Clock Gating	31
Ring Oscillator (ROSC)	31
Trimmed 4MHz RC Oscillator (CLKREF)	32
Internal Slow RC Oscillator	32
External Clock Input (EXTCLK)	32
PLL	32
Electrical Characteristics	33
Arm® CORTEX®-M0 Microcontroller Core	34

Features	34
Block Diagram	34
Functional Description	34
Electrical Characteristics	35
Typical Performance Characteristics	36
/O Controller	37
Features	37
Block Diagram	37
Functional Description	38
GPIO Current Injection	38
Electrical Characteristics	39
Serial Interface	40
Block Diagram	40
Functional Description	41
I ² C Controller	41
UART Controller	41
SPI Controller	42
Dynamic Characteristics	43
Timers	47
Block Diagrams	47
Functional Description	48
Timer A	48
Timer B	48
Timer C	49
Timer D	49
Watchdog Timer	49
CAFE Watchdog Timer	49
Wake-Up Timer	49
Real-Time Clock	49
Application Block Diagram	50
Application Reference Schematic	51
Thermal Characteristics	52
Pin Configuration and Description	53
Mechanical Information	56
Handling Precautions	57
Solderability	57

PAC5285

40V/20W BLDC Motor Controller and Driver with Integrated FETs

REVISION HISTORY	58
Contact Information	58
Important Notice	58

Table of Figures

Figure 1 Architectural Block Diagram	2
Figure 2 Power Manager Block Diagram	11
Figure 3 HVCP Circuit Connections	12
Figure 4 Linear Regulator Connections 3.3V I/O	13
Figure 5 Linear Regulator Connections 5V I/O	13
Figure 6 Power-up Sequence	14
Figure 7 CAFE Block Diagram	18
Figure 8 ADC Analog Input	20
Figure 9 ASPD Block Diagram	23
Figure 10 CAFE Block Diagram	25
Figure 11 CAFE Block Diagram	28
Figure 12 CCS Block Diagram	30
Figure 13 Arm® Cortex®-M0 Microcontroller Core Block Diagram	34
Figure 14 Arm® Cortex®-M0 Microcontroller Core	36
Figure 15 I/O Controller Block Diagram	37
Figure 16 Serial Interface Block Diagram	40
Figure 17 I2C Timing Diagram	45
Figure 18 SPI Timing Diagram	46
Figure 19 PWM Timers Block Diagram	47
Figure 20 AFE Watchdog and Wake-up Timer Block Diagram	48
Figure 21 Real-time Clock and Watchdog Timer Block Diagram	48
Figure 22 PAC5285 Application Block Diagram	50
Figure 23 PAC5285 Application Reference Schematic	51
Figure 24 Pin Diagram – Top View	53

Table of Tables

Table 1 HVCP Manager Electrical Characteristics	16
Table 2 Linear Regulators Electrical Characteristics	17
Table 3 Power Monitor Electrical Characteristics	17
Table 4 DA Electrical Characteristics	22
Table 5 PB Electrical Characteristics	22
Table 6 Temperature Protection Electrical Characteristics	22
Table 7 ASPD Electrical Characteristics	24
Table 8 ADC and Auto-Sampling Sequencer Electrical Characteristics	27
Table 9 ADC and Auto-Sampling Sequencer Electrical Characteristics	29
Table 10 CCS Electrical Characteristics	33
Table 11 Microcontroller Electrical Characteristics	35
Table 12 ADC and Auto-Sampling Sequencer Electrical Characteristics	39
Table 13 Serial Interface Dynamic Characteristics	43
Table 14 I2C Dynamic Characteristics	44
Table 15 SPI Dynamic Characteristics	46
Table 16 Thermal Characteristics	52
Table 17 – Pin Descriptions	54

Absolute Maximum Ratings

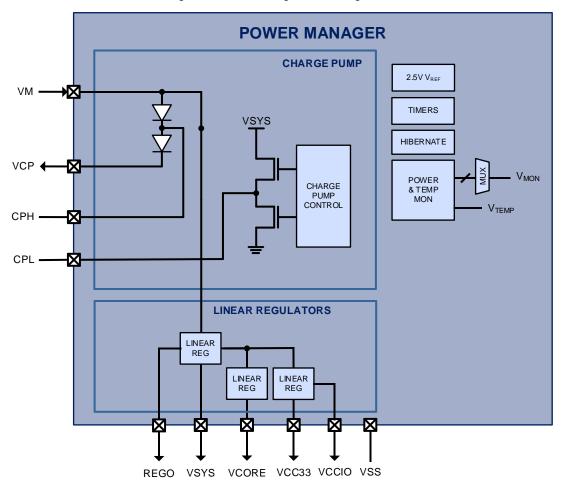
Symbol	Parameter	Value	Unit
Power Manager			
VM to VSS	Supply Input Voltage	-0.3 to 40	V
VCP to VM	Charge Pump Voltage	-0.3 to 6	V
CPH to VM		-0.3 to VCP + 0.3	V
CPL to VSS		-0.3 to VSYS	V
REGO to VSS	System Regulator Output Voltage	0.3 to VM + 0.3	V
VSYS to VSS	System Regulator Voltage	-0.3 to 6	V
VCC33 to VSS	Analog, IO Supply Voltage	-0.3 to 4.1	V
VCORE to VSS	Core Supply Voltage	-0.3 to 2.5	V
Signal Manager			
ISNSP, ISNSN, SRC to VSS	Current Sense Voltage	-0.3 to VSYS + 0.3	V
PB to VSS	Push-button Wakeup Input	-0.3 to 6	V
Driver Manager			
OUTU, OUTV, OUTW to VSS	Motor Phase Voltage	-1 to 44	V
10			
PAx, PDx, PEx to VSS	MCU IO Pin Voltage	-0.3 to VCCIO + 0.3	V
PCx to VSS	MCU IO/Analog Input Pin Voltage	-0.3 to VCC33 + 0.3	V
I _{Pxy} pin injection current		7.5	mA
∑l _{Pxy} sum of all pin injection current		25	mA
Temperature			
T _A	Ambient Temperature	-40 to 105	°C
T _{STG}	Storage Temperature	-40 to 140	°C
Electro-static Discharge (E	SD)		
Human Body Model (HBM)		2	kV
Charge Device Model (CDM)	All pins	1	kV

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
VM	Supply Input Voltage	5.5	12	27	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.


Power Manager

Features

- Charge Pump DC/DC for gate driver and inverter supply (HVCP)
- VSYS LDO for 5V system supply
- VCC33 LDO for 3.3V analog and IO supply
- VCORE LDO for 1.8V core supply
- High-accuracy 2.5V voltage reference for ADC (VREF)
- Power and temperature monitoring, warning and fault detection
- Extremely low hibernate mode I_Q of 8µA

Block Diagram

Figure 2 Power Manager Block Diagram

Functional Description

The Power Manager is optimized to efficiently provide "all-in-one" power management required by the PAC5285 and associated application circuitry. It incorporates a High-Voltage Charge Pump DC/DC (HVCP) to generate for the integrated high-side gate drivers and MOSFET inverter.

The VSYS LDO generates a 5V system supply that is used to power the IC and the other LDOs. VSYS is used to supply the low-side gate drivers, VCC33 and VCORE, which are used to generate a 3.3V analog and IO supply and 1.8V digital core supply.

The power manager also handles system functions including internal reference generation, timers, hibernate mode management, and power and temperature monitoring.

High-Voltage Charge Pump (HVCP)

The HVCP is a charge pump that is used to generate VCP, which is the high-side gate driver supply voltage. The charge pump maintains a voltage of VM + VSYS.

The positive terminal of the battery supply is connected to the VM pins on the PAC5285. This supply should be bypassed to ground using a high-value electrolytic capacitor in a parallel with a 0.1µF ceramic capacitor from VM to VSS. These pins require good capacitive bypass to VSS, so the ceramic capacitor should have a trace shorter than 10mm to the pin.

The charge pump requires a capacitor between the VM and VCP pins, to act as a storage capacitor for the gate driver supply. The nominal value of this capacitor should be $6.3V/2.2\mu F$. A flying capacitor should be placed between the CPH and CPL pins with a nominal value of $0.1\mu F$ rated for double the VM voltage.

Figure 3 below shows the typical circuit connections for the HVCP on the PAC5285.

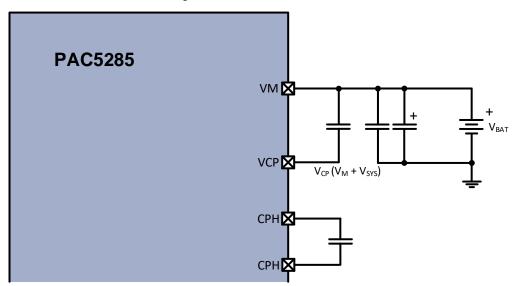


Figure 3 HVCP Circuit Connections

Integrated VM Sensing

The Power Manager also integrates the sensing of the battery voltage on VM, without the need for external components. This allows the user to sense VM for the application, without adding resistor dividers and consuming an analog input for the ADC.

Linear Regulators

The PAC5285 includes three linear regulators:

- VSYS
- VCC33
- VCORE

The VSYS regulator generates a 5V supply that is used to supply the internal logic and is the supply for the VCC33 and VCORE LDOs. Once VSYS is above 4.5V, the additional linear regulators VCC33 and VCORE power up. VSYS has up to 20mA of external load available for PCB peripherals. The REGO, system regulator output pin, must be externally coupled to VSYS using an external resistor. This closes the current loop and offloads power dissipation between VM and VSYS

The VCC33 regulator generates a dedicated 3.3V analog supply for the ADC and GPIO on the MCU. The VCORE regulator generates a dedicated 1.9V digital logic supply for the MCU. Once all LDOs are above their respective power good thresholds, the MCU is released from reset and begins executing instructions.

The figure below shows a typical circuit connection for a 3.3V I/O system. Each of the LDOs must be bypassed externally. See the electrical characteristics below for details on the recommended component values for each of the bypass capacitors.

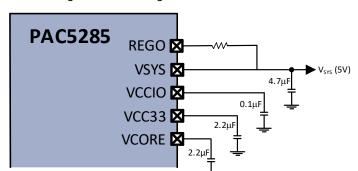
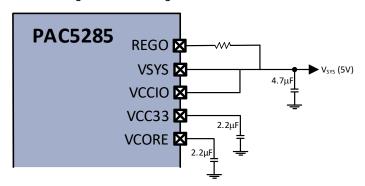
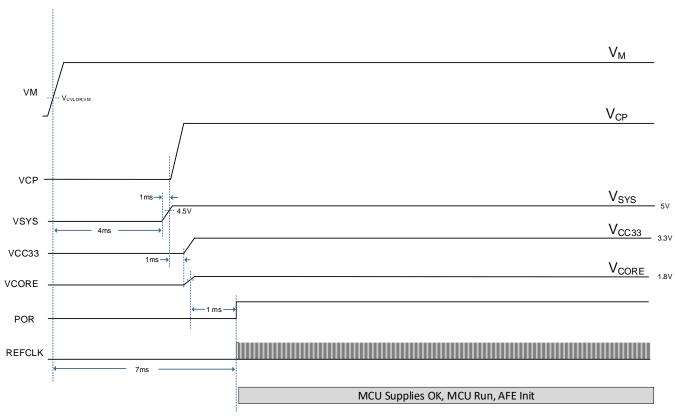


Figure 4 Linear Regulator Connections 3.3V I/O

For 5V I/O systems, short the VCCIO pin to VSYS to bypass the VCCIO regulator (see the figure below). Note that Port C pins are always 3.3V I/O.




Figure 5 Linear Regulator Connections 5V I/O

Power-up Sequence

The Power Manager follows a typical power-up sequence as shown in Figure 6 below.

Figure 6 Power-up Sequence

A typical sequence begins with input power supply being applied on VM. During this time, VCP will be about one diode drop lower than VM. After VM has reached a safe threshold, after 4ms the VSYS LDO starts to rise. After VSYS gets to its power good threshold, the VCP charge pump output is turned on and VCP will start to rise toward its final value of VM + VSYS.

After VSYS rises above its UVLO threshold and 1ms has elapsed, the VCC33 and VCORE LDOs are started. After VCORE and VCC33 has reached its power good threshold, there is a 1ms delay and then the POR signal will be released from reset to the MCU.

Low-Power Modes

The PAC5285 provides several low-power modes to assist with various tradeoffs between low-power functionality and energy savings. The low-power modes are as follows:

- Sleep/Deep Sleep Mode
- Hibernate Mode

In Sleep Mode the MCU stops executing instructions, but all other digital and analog functions remain active. This mode provides a modest amount of power savings, and the MCU may very quickly awake from this mode to being executing instructions.

In *Deep Sleep Mode*, the MCU also stops executing instructions and some digital peripherals on the MCU are also gated and put to sleep, depending on the needs of the application. Some analog functions remain active in this mode.

In *Hibernate Mode* the PAC5285 goes into an ultra-low-power mode and MCU is not powered. Before entering hibernate mode, the MCU may set a timer to wake itself up from hibernate mode or may rely on an external "push-button" event on PB to wake up from hibernate mode.

In this mode, only a minimal amount of current is used by VM, and the Power Manager and all internal regulators are shut down to eliminate power drain from the output supplies.

The system exits hibernate mode after the wake-up timer expires (duration from 25ms to 4s, or infinite) or when a push-button event is received on PB. These would have to be configured before entering hibernate mode. When exiting hibernate mode, the Power Manager goes through the start-up cycle and the MCU is re-initialized. Only the persistent power manager status bits (resets and faults) are retained during hibernation.

Power and Temperature Monitor

Whenever any of the VSYS, VCC33, or VCORE power supplies falls below their respective power good threshold voltage, a fault event is detected and the MCU is reset. The MCU stays in the reset state until VSYS, VCC33, and VCORE supply rails are all good again and the reset time has expired. An MCU reset can also be initiated by a maskable temperature fault event that occurs when the junction temperature reaches 165°C. The fault status bits are persistent during reset and can be read by the MCU upon re-initialization to determine the cause of previous reset.

Power monitoring signals are provided onto the ADC pre-multiplexer for monitoring various internal power supplies. The ADC pre-multiplexer can select from power monitoring signals: VCORE, 0.2•(VCP-VM), 0.4•VCC33, 0.4•VSYS, 0.05•VM or VPTAT.

For power and temperature warning, an IC temperature warning event at a junction temperature of 140°C is provided as a maskable interrupt to the MCU. This warning allows the MCU to safely power down the system.

This value has a compensation coefficient available in INFO FLASH that can be used to obtain an accurate temperature. The parameter VT300K will be stored in INFO FLASH and will indicate the compensation factor.

The die temperature in degrees Kelvin can then be calculated by the following formula:

 $T_{KELVIN} = 300 * (VPTAT + 0.075) / (VT300K + 0.075)$

VPTAT can be read by the ADC by setting the ADC MUX using the voltage monitoring signals above.

For more information on the location of this temperature coefficient, see the PAC5285 Device User Guide.

Voltage Reference

The reference block includes a 2.5V high precision reference voltage that provides the 2.5V reference voltage for the ADC.

Electrical Characteristics

The Electrical Characteristics for the Power Manager are shown below.

HVCP Electrical Characteristics

Table 1 HVCP Manager Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Input Supply	Input Supply (VM)					
Інів;∨м	VM hibernate mode supply current	Hibernate mode active, VM = 12V		8		μΑ
V _{OP;VM}	VM operating voltage range		5.5		27	V
Vuvlor;vm	VM under-voltage lockout rising		5.2	5.4		V
Vuvlof;vm	VM under-voltage lockout hysteresis			0.3		V
Vovlor;vm	VM over-voltage lockout rising		36			V
Vovlof;vm	VM over-voltage lockout hysteresis			3.5		V
Charge Pum	p Output (VCP)					
V _{OP;VCP}	VCP operating voltage range			VM + VSYS		V
CVCP	VCP capacitor value			1		μF
V _{UVLOR;VCP}	Charge Pump UVLO rising	VCP - VM		4		V
VUVLOF;VCP	Charge Pump UVLO hysteresis	VCP - VM		0.5		V

VM = 12V and $T_A = -40$ °C to 105°C unless otherwise specified

Linear Regulators Electrical Characteristics

Table 2 Linear Regulators Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Vsys	VSYS output voltage	External load = up to 20mA		5.0		V
V _{CC33}	VCC33 output voltage	No external load allowed		3.3		V
VCORE	VCORE output voltage	No external load allowed		1.9		V
Vuvlor;vsys	VSYS under-voltage lockout rising		4.35	4.5	4.65	V
Vuvlof;vsys	VSYS under-voltage lockout hysteresis			0.3		V
К РОК;VСС33	VCC33 power OK threshold	VCC33 rising, hysteresis = 10%	85	90	95	%
K POK;VCORE	VCORE power OK threshold	VCORE rising, hysteresis = 10%	85	90	95	%
V _{SYS;DO}	VSYS drop-out voltage	Minimum VM-VSYS at VSYS=5V, External load = 10mA		200		mV
Cvsys	VSYS bypass capacitor value			4.7	10	μF
Суссзз	VCC33 bypass capacitor value			2.2	10	μF
Cvcore	VCORE bypass capacitor value			2.2	10	μF
Cvccio	VCCIO bypass capacitor value			0.1		μF
RDSCH;VSYS	VSYS discharge resistance	LDO disabled		2.5		kΩ
Rosch	LDO output discharge resistance	LDO disabled		330		Ω

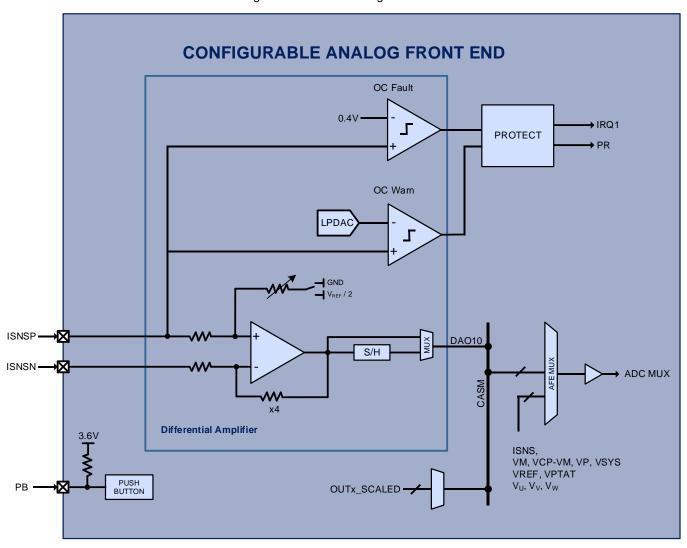
VM = 12V and $T_A = -40$ °C to 105°C unless otherwise specified

Power Monitor Electrical Characteristics

Table 3 Power Monitor Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
.,	Defense Veltere	T _A = 25°C	-0.5%	2.5	0.5%	V
V _{REF}	Reference Voltage	$T_A = -40$ °C to 105 °C		2.5		V
	T-i	T _A = 25°C	3.95	3.95 4 4.05	4.05	MHz
fclkref	Trimmed CLKREF frequency	$T_A = -40$ °C to 105 °C	3.91	4	4.08	MHz
	Trimmed CLKREF jitter	T _A = -40°C to 85°C		3.95 4 4.05 M 3.91 4 4.08 M 0.5 1 V	%	
Кмон		VCORE		1		V / V
		VSYS, VCC33		0.4		V / V
	Power Monitoring Voltage coefficient	VCP – VM		0.2		V / V
	Coefficient	VM		0.05		V/V
		OUTU, OUTV, OUTW		0.1		V/V

VM = 12V and $T_A = -40$ °C to 105°C unless otherwise specified


Configurable Analog Front-End (CAFE)

Features

- Differential Amplifier with configurable sample and hold
- Motor Over-Current Protection and Shutdown Comparator
- Programmable Over-Current Warning Comparator
- Power Monitoring
- Hibernate Push-Button Wake-up

Block Diagram

Figure 7 CAFE Block Diagram

Functional Description

The PAC5285 contains a Configurable Analog Front-End (CAFETM) available through analog pins on the device. These pins can be used to configure interconnect circuitry made up of 1 Differential Amplifier and a push-button hibernate wake-up.

The PAC5285 configurable analog signal matrix (CASM) and configurable digital signal matrix (CDSM) allow real-time asynchronous analog and digital signals to be routed in flexible circuit connections for different applications. A push-button function is provided for optional push button on, hibernate and off power management functions.

The CAFE™ also contains a power monitor MUX that allows all available power supplies to be sampled by the ADC for control and operation of the application.

Differential Amplifier (DA)

The PAC5285 contains one differential amplifier (DA) which may be used to sense motor current using an external sense resistor. The ISNSP pin is connected to the positive terminal of the amplifier and the ISNSN pin is connected to the negative terminal of the amplifier. The DA has a fixed gain of x4. The DA is optimized for use with signal source impedance lower than 500Ω and with matched source impedance on both positive and negative inputs for minimal offset. The effective gain is scaled by $80k / (80k + R_{SOURCE})$, where R_{SOURCE} is the matched source impedance of each input.

The amplifier has -0.3V to 3.3V input common mode range, and the final output of the differential amplifier circuitry, DAO10, can be selected as the direct output of the DA or a sample-and-hold version of the DA. The sample-and-hold circuit is synchronized with the ADC auto-sampling mechanism. The DA is accompanied by offset calibration circuitry, and two protection comparators for protection event monitoring.

The output current of the motor phases will be 1.5A absolute maximum. BLDC motors may need to measure negative phase current (for FOC control), so the input voltage on the differential amplifier input pins will need to be between -0.3V to 0.3V. This is then gained by x4 to 1.25V for the output of the differential amplifier and ultimately routed to the ADC analog input.

So, a typical current sense resistor would be $200m\Omega$:

- V = 0.25V
- I = 1.5A
- R = V / I = 0.25/1.5; so, $R = 200 \text{m}\Omega$

Over-Current Warnings and Faults

The PAC5285 has a fixed over-current fault threshold that is monitored by the OC Fault comparator. The OC Fault comparator has a fixed reference of 0.4V. With a $200m\Omega$ sense resistor, this comparator will trip when the sensed current is above 1.5A, as shown in the formula above. When this comparator trips, the PR signal to the ASPD will be asserted and the gate drivers will be disabled. During this event, the IRQ1 signal to the MCU will not be asserted.

The PAC5285 has a programmable over-current warning threshold that is monitored by the OC Warn comparator. The OC Warn comparator has a reference that is set by the output of the 4-bit LPDAC. When this comparator trips, the IRQ1 signal to the MCU will be asserted.

Push Button (PBTN)

PB may be configured as a push-button input that is used to wake-up the PAC5285 when it is in hibernate mode. Before entering hibernate mode, the MCU can configure PB to be a wake-up source to exit hibernate mode. When a high-to-low transition is observed on PB, the CAFE will wake-up the device.

In addition, the PBTN may be used as a hardware reset for the MCU when it is held low for longer than 4s during normal operation.

The PBTN will be pulled up to 3.6V using a 50k resistor. Pulling this signal to ground will raise the push-button event.

ADC Analog Input

The PAC5285 has several different analog input channels that may be used for analog-to-digital conversions using the MCU ADC. The diagram below shows the hierarchy of MUXes that are available for analog signal sampling.

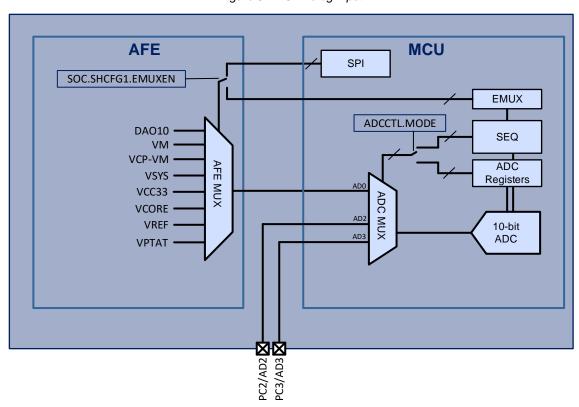


Figure 8 ADC Analog Input

The PAC5285 contains two key analog MUXes:

- ADC MUX
- AFE MUX

The ADC MUX is an 8-channel MUX local to the ADC on the MCU that is directly controlled either by registers in the MCU, or automatically by the ADC DTSE. The output of the ADC MUX is sampled by the ADC. The AD0 input to the ADC MUX is connected to the AFE MUX. ADC MUX input channels AD2 and AD3 are directly connected to pins on the PAC5285.

The AFE MUX is an 8-to-1 MUX that selects between the Differential Amplifier output (DAO10), power supply rails and the internal temperature sensor (VPTAT). This allows the ADC to rapidly sample the motor phase current, power supply rails, external voltage and temperature signals and the internal device temperature using the ADC hardware sequencer on the device.

20 of 58

For more information on controlling the various MUXes using the ADC and ADC sequencer, see the PAC5285 User Guide.

Temperature Protection

The PAC5285 has two level of temperature protection. When the device reaches an internal temperature of 140°C, there is a mask-able interrupt that may be generated on IRQ1 to the MCU. The MCU may use this information to change the application behavior or disable the motor. The temperature warning status is cleared when the internal temperature falls below the temperature warning hysteresis threshold after the blanking time.

When the device reaches an internal temperature of 165°C, the device will shut down all power supplies and gate drivers. The device will re-start when the internal temperature falls below the temperature fault hysteresis threshold after the blanking time.

Electrical Characteristics

The Electrical Characteristics for the CAFE are shown below.

DA Electrical Characteristics

Table 4 DA Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VICMR;DA	Input common mode range		-0.3		3.3	V
V _{OLR;DA}	Output linear range		0.1		V _{SYS} – 0.1	V
V _{SHR;DA}	Sample and hold range		0.1		3.5	V
I _{CC;DA}	Operating supply current	Each enabled amplifier		150		μΑ
Vos;da	Input offset voltage	Gain = 4x	-8		8	mV
k _{CMRR;DA}	Common mode rejection ratio		50	80		dB
	Slew rate	Gain = 4x	10			V/μs
R _{INDIF;DA}	Differential input impedance	Differential mode		80		kΩ
tst;da	Settling time	To 1% of final value			360	ns
Avzi;da	Differential amplifier gain	Gain = $4x$, $V_{DAXP}=V_{DAXN}=0V$, $T_A = 25$ °C	-2	4	2	%

 $T_A = -40$ °C to 105°C unless otherwise specified

PB Electrical Characteristics

Table 5 PB Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{I;PBTN}	Input voltage range		0		5	V
V _{IH;PBTN}	High-level input voltage		2			V
V _{IL;PBTN}	Low-level input voltage				0.8	V
R _{PU;РВТN}	Pull-up resistance	To 3.6V, push-button input mode; active-low		50		kΩ

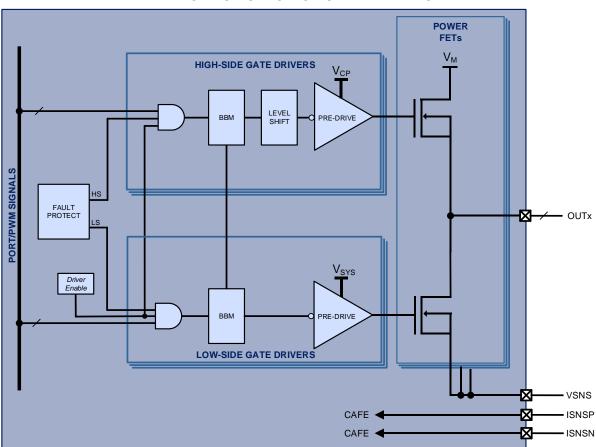
 $T_A = -40$ °C to 105°C unless otherwise specified

Temperature Protection Electrical Characteristics

Table 6 Temperature Protection Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Twarn	Temperature warning threshold			140		°C
Twarn;hys	Temperature warning hysteresis			10		°C
Twarn; Blank	Temperature warning blanking			10		μs
T _{FAULT}	Temperature fault threshold			165		°C
T _{FAULT;HYS}	Temperature fault hysteresis			10		°C
T _{FAULT;BLANK}	Temperature fault blanking			10		μs

Application Specific Power Drivers (ASPD)


Features

- 3 High-side Level-shifters and Gate Drivers
- 3 Low-side Gate Drivers
- 6 40V/300mΩ Power MOSFETs for 3-phase BLDC motors
- Break-before-make Dead-Time Enforcement
- OC, UV and OV Protection

Block Diagram

Figure 9 ASPD Block Diagram

APPLICATION SPECIFIC POWER DRIVERS

Functional Description

The Application Specific Power DriversTM (ASPD) module handles power driving for motor control applications. The ASPD contains 3 high-side gate drivers, 3 low-side gate drivers and 6 N-CH Power MOSFETs to create 3 half H-bridge inverters used for three-phase BLDC motor applications.

Each motor phase is controlled by input signals from the MCU: a high-side PWM input and a low-side PWM input. The MCU performs dead-time insertion when used in complementary mode.

The break-before-make (BBM) unit enforces dead-time between the high-side and low-side gate drivers within a half-bridge. The high-side gate driver is supplied by VCP and the low-side is supplied by VSYS. The output of each motor phase is up to 500mA, with a typical current output of 200mA.

The ASPD also integrates gate driver over-current, SRC voltage sense fault, under-voltage and over-voltage protection. In the event of these failures, the ASPD is disabled and the MCU is notified through an interrupt.

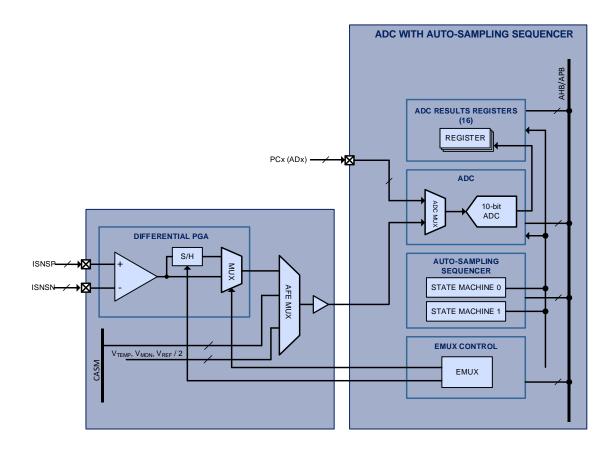
The ASPD integrates gate driver over-current warning threshold that can 4 bit programable from 20mV to 320mV.

Electrical Characteristics

The Electrical Characteristics for the ASPD are shown below.

Table 7 ASPD Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
R _{DS(ON)}	Inverter MOSFET RDS(ON)			300	600	mΩ
V _{TH;OCP}	Over-current protection threshold			0.4		V
V _{TH;nIRQ}	Warning current threshold	LPDAC = 1000b		0.16		V
V _{FLT:SRC}	SRC voltage sense fault threshold			0.5		V


 $T_A = -40$ °C to 105°C unless otherwise specified

ADC With Auto-Sampling Sequencer

Block Diagram

Figure 10 CAFE Block Diagram

Functional Description

ADC

The analog-to-digital converter (ADC) is a 10-bit successive approximation register (SAR) ADC with 1 µs conversion time and up to 1MSPS capability. The ADC input clock has a user-configurable divider from /1 to /8 of the system clock. The integrated analog multiplexer allows selection from up to 2 direct ADx inputs, the differential amplifier or several internally sampled voltages in the Configurable Analog Front End (CAFE). The ADC can be configured for repeating or non-repeating conversions and can interrupt the microcontroller when a conversion is finished.

Auto-Sampling Sequencer

Two independent and flexible auto-sampling sequencer state machines allow signal sampling using the ADC without interaction from microcontroller core. Each auto-sampling sequencer state machine can be programmed to take and store up to 8 samples each in the ADC result register from different analog inputs, able to control the ADC MUX and AFE MUX as well as the precise timing of the S/H in the Configurable analog front end. The sampling start of the auto-sampling sequencer can be precisely triggered using timers A, B, C, or D or any of their associated PWM edges (high-to-low or low-to-high). It also supports manual start or a ping-pong-scheme, where one auto-sampling sequencer state machine triggers the other when it finishes sampling.

The auto-sampling sequencer can interrupt the microcontroller when either conversion sequence is finished.

EMUX Control

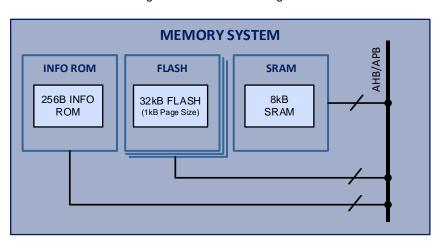
A dedicated low latency interface controllable by the auto-sampling sequencer or register control allows changing the AFE MUX and asserting/de-asserting the S/H circuit in the configurable analog front end, allowing back to back conversions of multiple analog inputs without microcontroller interaction.

Electrical Characteristics

Table 8 ADC and Auto-Sampling Sequencer Electrical Characteristics

Symbol	Parameter Conditions Min. Typ.		Max.	Units		
ADC			·			
fadclk	ADC conversion clock input				16	MHz
t _{ADCONV}	ADC conversion time f _{ADCLK} = 16MHz				1	μs
	ADC resolution			10		bits
	ADC effective resolution		9.2			bits
	ADC differential non-linearity (DNL)			±0.5		LSB
	ADC integral non-linearity (INL)			±1		LSB
	ADC offset error			0.6		%FS
	ADC gain error			0.12		%FS
Reference	Voltage					
V _{REFADC}	ADC reference voltage input			2.5		V
Sample an	d Hold					
tadcsh	ADC sample and hold time	fadclk = 16MHz		188		ns
CADCIC	ADC input capacitance			1.3		pF
Input Volta	ige Range					
V _{ADCIN}	ADC input voltage range	ADC multiplexer input	0		V _{REFADC}	V
EMUX Clo	ck Speed		<u>.</u>		•	
femuxclk	EMUX engine clock input				50	MHz

 $V_{SYS} = V_{CCIO} = 5V$, $V_{CC33} = 3.3V$, $V_{CC18} = 1.8V$, and $T_A = -40$ °C to 105°C unless otherwise specified


Memory System

Features

- 32kB embedded FLASH
 - 100,000 program/erase cycles
 - 10 years data retention
- 8kB SRAM

Block Diagram

Figure 11 CAFE Block Diagram

Functional Description

The device has multiple banks of embedded FLASH memory, SRAM memory, as well as peripheral control registers that are all program-accessible in a flat memory map.

Program and Data FLASH

32kB in 32 pages of 1kB each is available for program or data memory. Each of them can be individually erased or written to while the microcontroller is executing a program from SRAM.

SRAM

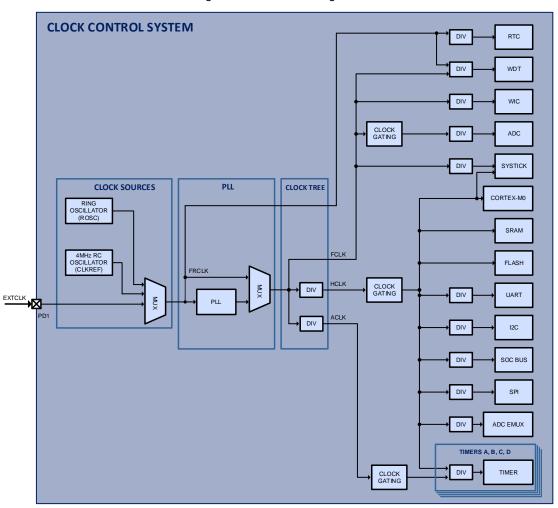
Up to 8kB contiguous array of SRAM is available for non-persistent data storage. The SRAM memory supports word (4-byte), half-word (2-byte) and byte address aligned access. The microcontroller may execute code out of SRAM for time-critical applications, or when modifying the contents of FLASH memory.

Electrical Characteristics

Table 9 ADC and Auto-Sampling Sequencer Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Embedded FI	LASH					
tread;flash	FLASH read time		40			ns
twrite;flash	FLASH write time		20			μs
tperase;flash	FLASH page erase time				10	ms
Nperase;flash	FLASH program/erase cycles			100k		cycles
t _{DR;FLASH}	FLASH data retention		10			years
SRAM			•	•		•
t _{SRAM}	SRAM access cycle time		20			ns

($V_{SYS} = V_{CCIO} = 5V$, $V_{CC33} = 3.3V$, $V_{CC18} = 1.8V$, and $T_A = -40^{\circ}C$ to $105^{\circ}C$ unless otherwise specified.)


Clock Control System

Features

- Ring oscillator with 7.5MHz, 9.6MHz, 13.8MHz, and 25.7MHz settings
- High accuracy 2% trimmed 4MHz RC oscillator
- Crystal oscillator driver supporting 2MHz to 10MHz crystals
- External clock input up to 40MHz
- PLL with 1MHz to 25 MHz input, and 3.5MHz to 100MHz output
- /1 to /8 clock divider for HCLK
- /1 to /128 clock divider for ACLK

Block Diagram

Figure 12 CCS Block Diagram

Functional Description

The PAC clock control system covers a wide range of applications.

Free Running Clock (FRCLK)

The free running clock (FRCLK) is generated from one of the 3 clock sources: ring oscillator, trimmed RC oscillator or external clock input. The FRCLK is used for the real-time clock (RTC), watchdog timer (WDT), input to the PLL, or FCLK source to clock the system in low power and sleep mode.

Fast Clock (FCLK)

The fast clock (FCLK) is generated from the PLL or supplied by the FRCLK directly. The FCLK supplies the watchdog timer (WDT), ADC, wake-up interrupt controller (WIC), SysTick timer, Arm® Cortex®-M0 peripheral high speed clock (HCLK) and low speed clock (LSCLK).

High-Speed Clock (HCLK)

The high-speed clock (HCLK) is derived from the FCLK with a /1, /2, /4 or /8 divider. It supplies the peripheral AHB/APB bus, Timers A to D, dead-time controllers, SPI interface, I²C interface, UART interface, EMUX interface, SOC bus bridge and memory subsystem, and can go as high as 50MHz.

Auxiliary Clock (ACLK)

The auxiliary clock (ACLK) is derived from FCLK with a /1, /2, to /128 divider, and supplies the timer and dead-time blocks. It can be clocked faster or slower than HCLK and can go as high as 100MHz.

Clock Gating

The clock tree supports clock gating in deep-sleep mode for the timer block, ADC, SPI interface, I²C interface, UART interface, memory subsystem and the Arm® Cortex®-M0 itself.

Ring Oscillator (ROSC)

The integrated ring oscillator provides 4 different clocks with 7.5MHz, 9.6MHz, 13.8MHz, and 25.7MHz settings. After reset, the clock tree always defaults to this clock input with the lowest frequency setting.

Trimmed 4MHz RC Oscillator (CLKREF)

The 2% trimmed 4MHz RC oscillator provides an accurate clock suitable for many applications. It is also used to derive the clock for the Multi-Mode Power Manager.

Internal Slow RC Oscillator

An internal 32kHz RC oscillator is used during start up to provide an initial clock to analog circuitry. It is not used as a clock input to the clock tree.

External Clock Input (EXTCLK)

The clock tree can be supplied with an external clock up to 10MHz when the PD1 pin mux is set to EXTCLK.

PLL

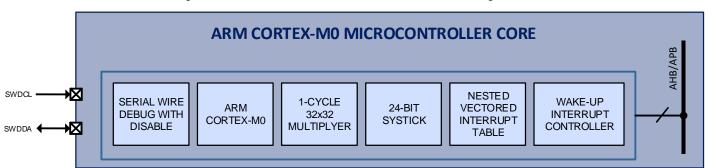
The integrated PLL input clock is supplied by the FRCLK with an input frequency range of 1MHz to 25MHz. The PLL output frequency is adjustable from 3.5MHz to 100MHz.

Electrical Characteristics

Table 10 CCS Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Clock Tree (FRCLK, FCLK, HCLK and ACLK)					
f _{FRCLK}	Free-running clock frequency				50	
f _{FCLK}	Fast clock frequency				100	MHz
f _{HCLK}	High-speed clock frequency				100	IVITIZ
faclk	Auxilliary clock frequency				100	
Internal Osc	illators					
		Frequency setting = 11b		7.5		
f	D: "" ()	Frequency setting = 10b		9.6		MHz
frosc	Ring oscillator frequency	Frequency setting = 01b		13.8		- IVIHZ
		Frequency setting = 00b		25.7		
	Trimmed RC oscillator frequency	T _A = 25°C	-1.25%	4	1.25%	MHz
f _{TRIM}		$T_A = -40^{\circ}C \text{ to } 105^{\circ}C$	-2%	4	2%	
	Trimmed RC oscillator clock jitter	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$		0.5		%
External Clo	ock Input					
fextclk	External clock input frequency range				40	MHz
thigh;extclk	External clock high time		10			ns
tlow;extclk	External clock low time		10			ns
PLL						
f _{INPLL}	PLL input frequency range		2		25	MHz
foutpll	PLL output frequency range		3.5		100	MHz
	PLL settling time			0.5		ms
	DLL paried litter	RMS		30		
	PLL period jitter	Peak to peak		±150		ps

 $(V_{SYS} = V_{CCIO} = 5V, V_{CC33} = 3.3V, V_{CC18} = 1.8V, and T_A = -40^{\circ}C to 105^{\circ}C unless otherwise specified.)$


Arm® CORTEX®-M0 Microcontroller Core

Features

- Arm® Cortex®-M0 core
- Fast single-cycle 32-bit x 32-bit multiplier
- 24-bit SysTick timer
- Up to 50MHz operation
- Serial wire debug (SWD), with 4 breakpoint and 2 watch-point unit comparators
- Nested vectored interrupt controller (NVIC) with 25 external interrupts
- Wake-up interrupt controller (WIC) with GPIO, real-time clock (RTC) and watchdog timer (WDT) interrupts enabled
- Sleep and deep-sleep mode with clock gating

Block Diagram

Figure 13 Arm® Cortex®-M0 Microcontroller Core Block Diagram

Functional Description

The Arm® Cortex®-M0 microcontroller core is configured for little endian operation and includes the fast single-cycle 32-bit multiplier and 24-bit SysTick timer and can operate at a frequency of up to 50MHz.

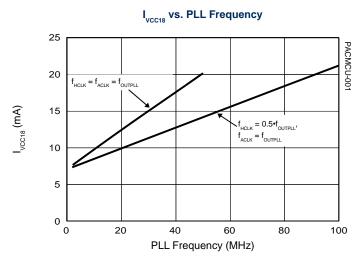
The microcontroller nested vectored interrupt controller (NVIC) supports 25 external interrupts for the device's peripherals and subsystems. For low-latency interrupt processing, the NVIC also supports interrupt tail-chaining. The wake-up interrupt controller (WIC) can wake up the device from low-power modes using any GPIO interrupt, as well as from the RTC or WDT. The Arm® Cortex®-M0 supports both sleep and deep-sleep low-power modes. The deep-sleep mode supports clock gating to limit standby power even further.

Firmware debug support includes 4 breakpoint and 2 watch-point unit comparators using the serial wire debug (SWD) protocol. The serial wire debug mechanism can be disabled to prevent device access to the firmware in the field.

Electrical Characteristics

Table 11 Microcontroller Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
fhclk	Microcontroller clock	HCLK			50	MHz
		f _{FRCLK} = f _{HCLK} = f _{ACLK} = ROSC 11b, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled	2.5 ¹	3.4	7	
		frclk = fhclk = faclk = ROSC 01b, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled	3.0 ¹	5.3	9.5	
	V _{SYS} operating supply current	frclk = fhclk = faclk = ROSC 01b, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled	4.1 ¹	5.3	9.5	
lop;vsys		frclk = fhclk = faclk = ROSC 01b, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled	7.4 ¹	9	15	mA
		frclk = fhclk = faclk = CLKREF, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled	1.5 ¹	2.3	4.4	
		frclk = 4MHz CLKREF, fhclk = 50MHz, faclk = foutpll = 100MHz, CPU halt; other clock sources, ADC, timers, and serial interface disabled	3.6 ¹	4.5	6.7	
		f _{FRCLK} = 4MHz CLKREF, f _{HCLK} = 50MHz, f _{ACLK} = f _{OUTPLL} = 100MHz, CPU halt; other clock sources, ADC, timers, and serial interface disabled	20.9 ¹	23.3	26.5	

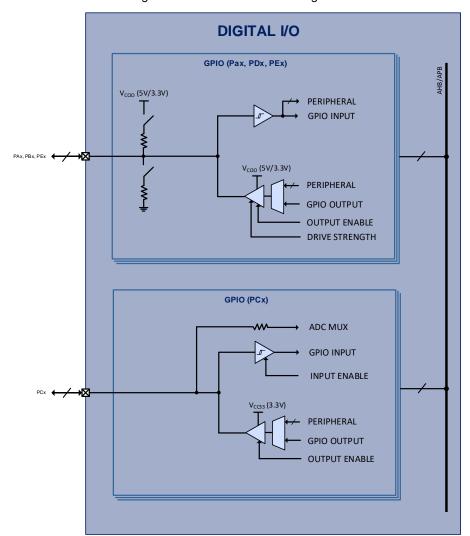

 $(V_{SYS} = V_{CCIO} = 5V, V_{CC33} = 3.3V, V_{CC18} = 1.8V, and T_A = -40^{\circ}C to 105^{\circ}C unless otherwise specified.)$

¹ All minimum operating supply current values are for room temperature only

Typical Performance Characteristics

Figure 14 Arm® Cortex®-M0 Microcontroller Core

($V_{SYS} = V_{CCIO} = 5V$, $V_{CC33} = 3.3V$, $V_{CC18} = 1.8V$, and $T_A = 25^{\circ}C$ unless otherwise specified.)


I/O Controller

Features

- 5V-compliant I/O PAx, PDx, PEx
- 3.3V-compliant I/O PCx
- Configurable drive strength on PAx, PDx, PEx
- Configurable pull-up or pull-down on PAx, PDx, PEx

Block Diagram

Figure 15 I/O Controller Block Diagram

Functional Description

The PAC can support up to 4 ports with 8 I/Os each from PAx, PCx, PDx, and PEx, in addition to the I/Os on the analog front end. All PAx, PCx, PDx, and PEx ports have interrupt capability with configurable interrupt edge.

PAx, PDx, and PEx I/Os use V_{CCIO} as the I/O supply voltage that is 5V on default parts (and 3.3V available from factory). The drive current can be configured as 8mA or 16mA. They also support weak pull-up and pull-down to save external components.

PCx uses V_{CC33} as its I/O supply voltage. The drive current is fixed to 8mA. PC0 to PC5 are also associated with analog inputs AD0 to AD5 to the ADC.

GPIO Current Injection

Under normal operation, there should not be current injected into the GPIOs on the device due to the GPIO voltage below ground or above the GPIO supply.² Current injected occurs when the GPIO pin voltage is less than -0.3V or when greater than GPIO supply + 0.3V.

In order provide a robust solution when this situation occurs, this device allows a small amount of injected current into the GPIO pins, to avoid excessive leakage or device damage.

For information on the GPIO current injection thresholds, see the absolute maximum parameters for this device.

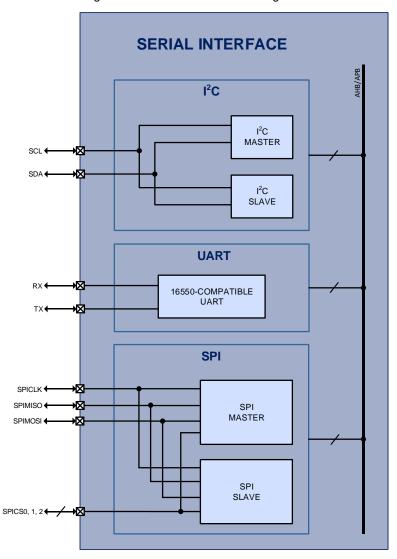
Sustained operation with the GPIO pin voltage greater than the GPIO supply or when the GPIO pin voltage is less than -0.3V may result in reduced lifetime of the device. GPIO current injection should only be a temporary condition.

² VCC33 is the supply for any PC GPIO pin and VCCIO is the supply for any other GPIO pins.

Electrical Characteristics

Table 12 ADC and Auto-Sampling Sequencer Electrical Characteristics

Symbol	Parameter	Conditions			Min.	Тур.	Max.	Units
PAx, PDx,	PEx (5V Operation)							
V _{IH}	High-level input voltage	Vccio = 5V			3			V
VIL	Low-level input voltage	Vccio = 5V				0.8	V	
loL	Low-level output sink current	V _{CCIO} = 5V, Drive strength setting =		e strength setting = 0b	7			m Λ
	Low-level output sink current	$V_{OL} = 0.4V$	Drive	e strength setting = 1b	15			mA
lau	High-level output source	Vccio = 5V,	Drive	e strength setting = 0b			-7	mA
Іон	current	V _{OH} = 2.4V	Drive	e strength setting = 1b			-15	IIIA
R_{PU}	Weak pull-up resistance	$V_{CCIO} = 5V$			53	66	87	kΩ
R _{PD}	Weak pull-down resistance	Vccio = 5V			63	108	244	kΩ
I _{IL}	Input leakage current	T _A = 125°C			-10	0	10	μΑ
PAx, PDx	PEx (3.3V Operation)							
V_{IH}	High-level input voltage	V _{CCIO} = 3.3V		2			V	
VIL	Low-level input voltage	Vccio = 3.3V					0.8	V
I _{OL}	Low-level output sink current	V _{CCIO} = 3.3V, V _{OL} =		Drive strength setting = 0b	4			mA
		0.4V		Drive strength setting = 1b	8			
loн High-level or current	High-level output source	Vccio = 3.3V,		Drive strength setting = 0b		-4	-4	mA
		V _{OH} = 2.4V		Drive strength setting = 1b			-8	
R _{PU}	Weak pull-up resistance	Vccio = 3.3V			47	74	104	kΩ
R _{PD}	Weak pull-down resistance	$V_{CCIO} = 3.3V$			50	84	121	kΩ
lıL	Input leakage current	T _A = 125°C			-10	0	10	μΑ
PCx (3.3V	Operation)							
VIH	High-level input voltage	V _{CC33} = 3.3V		2			V	
VIL	Low-level input voltage	V _{CC33} = 3.3V				0.8	V	
IOL	Low-level output sink current	V _{CC33} = 3.3V, V _{OL} = 0.4V		7			mA	
IOH	High-level output source current	Vcc33 = 3.3V, VoH = 2.4V				-7	mA	
IIL	Input leakage current	T _A = 125°C			-10	0	10	μA


(Vsys = Vccio = 5V, Vcc33 = 3.3V, Vcc18 = 1.8V, and T_A = -40°C to 105°C unless otherwise specified.)

Serial Interface

Block Diagram

Figure 16 Serial Interface Block Diagram

Functional Description

The device has up to three serial interfaces: I²C, UART, and SPI.

I²C Controller

The I²C controller is a configurable peripheral that can support various modes of operation:

- I²C master operation
 - ◆ Normal mode (100kHz), fast mode (400kHz), or fast mode plus (1MHz)
 - Single and multi-master
 - Synchronization (multi-master)
 - Arbitration (multi-master)
 - 7-bit or 10-bit slave addressing
- I²C slave operation
 - ◆ Normal mode (100kHz), fast mode (400kHz), or fast mode plus (1MHz)
 - Clock stretching
 - ◆ 7-bit or 10-bit slave addressing

The I²C peripheral may operate either by polling or can be configured to be interrupt driven for both receive and transmit data.

UART Controller

The UART peripheral is a configurable peripheral that can support various features and modes of operation:

- Programmable clock selection
- National Instruments PC16550D compatible
- 16-deep transmit and receive FIFO and fractional clock divisor
- Up to 3.125Mbps communication speed (with HCLK = 50MHz)

The UART peripheral may operate either by polling or can be configured to be interrupt driven for both receive and transmit data.

SPI Controller

The device contains an SPI controller that can each be used in either master or slave operation, with the following features:

- SPI master operation
 - Control of up to three different SPI slaves
 - Operation up to 25MHz
 - Flexible multiple transmit mode for variable-size SPI data with user-defined chip-select behavior
 - Chip select "shaping" through programmable additional delay for chip-select setup, hold and wait time for back-to-back transfers
- SPI master or slave operation
 - Supports clock phase and polarity control
 - ◆ Data transmission/reception can be on 8-, 16-, 24- or 32-bit boundary
 - Selectable data bit ordering (LSB or MSB first)
 - Programmable chip select polarity
 - Selectable "auto-retransmit" mode

The SPI peripheral may operate either by polling or can be configured to be interrupt driven for both receive and transmit data.

Dynamic Characteristics

Table 13 Serial Interface Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I2C						
	I2C input clock frequency	Standard mode (100kHz)	2.8			MHz
f _{12CCLK}		Fast mode (400kHz)	2.8			MHz
		Fast mode plus (1MHz)	6.14			MHz
UART						
,	UART input clock frequency				f _{HCLK} /16	MHz
f UARTCLK	UART baud rate	f _{HCLK} = 50MHz			3.125	Mbps
SPI						
fspiclk	SPI input clock frequency	Master mode			f _{HCLK} /2	MHz
		Slave mode			f _{HCLK} /2	MHz

43 of 58

(Vsys = Vccio = 5V, Vcc33 = 3.3V, Vcc18 = 1.8V, and T_A = -40°C to 105°C unless otherwise specified.)

Table 14 I2C Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
		Standard mode	0		100		
fscL	SCL clock frequency	Fast mode	0		400	kHz	
		Fast mode plus	0		1000		
		Standard mode	4.7				
t_{LOW}	SCL clock low	Fast mode	1.3			μs	
		Fast mode plus	0.5				
		Standard mode	4.0				
thigh	SCL clock high	Fast mode	0.6			μs	
		Fast mode plus	0.26				
		Standard mode	4.0				
t _{HD;STA}	Hold time for a repeated START condition	Fast mode	0.6			μs	
	STAILT CONGILION	Fast mode plus	0.26				
		Standard mode	4.7				
tsu;sta	Set-up time for a repeated START condition	Fast mode	0.6			μs	
		Fast mode plus	0.26				
	Data hold time	Standard mode	0		3.45		
thd;dat		Fast mode	0		0.9	μs	
		Fast mode plus	0				
	Data set-up time	Standard mode	250				
t _{SU;DAT}		Fast mode	100			ns	
		Fast mode plus	50			1	
		Standard mode	4.0				
tsu;sto	Set-up time for STOP condition	Fast mode	0.6			μs	
	Condition	Fast mode plus	0.26				
		Standard mode	4.7				
t _{BUF}	Bus free time between a STOP and START condition	Fast mode	1.3			μs	
	STOT and START condition	Fast mode plus	0.5				
		Standard mode			1000		
tr	Rise time for SDA and SCL	Fast mode	20		300	ns	
		Fast mode plus			120		
		Standard mode			300		
t_f	Fall time for SDA and SCL	Fast mode			300	ns	
		Fast mode plus			120		
0	Capacitive load for each bus	Standard mode, fast mode			400		
C _b	line	Fast mode plus			550	pF	

Figure 17 I2C Timing Diagram

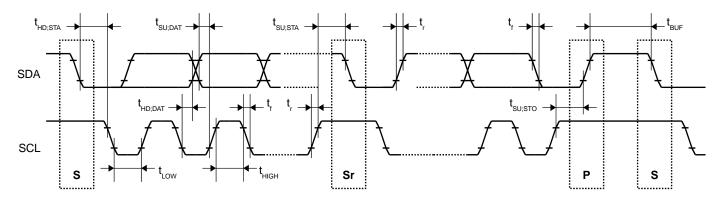
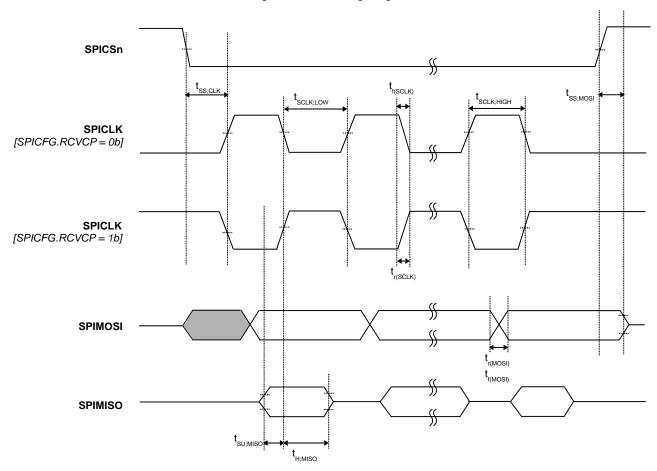



Table 15 SPI Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
tsclk;HIGH	SPICLK Input High Time	SPICLK = 25MHz	30			ns
tsclk;low	SPICLK Input Low Time		30			ns
tss;sclk	SPICSn to SPICLK Time		120			ns
tss;mosi	SPICSn to SPIMISO High-impedance time		10		50	ns
tr(SCLK)	SPICLK Rise Time			10	25	ns
t _{f(SCLK)}	SPICLK Fall Time			10	25	ns
t _{r(MOSI)}	SPIMISO Rise Time			10	25	ns
t _f (SMOSI)	SPIMISO Fall Time			10	25	ns
tsu;miso	SPIMISO Setup Time		20			ns
t _{H;MISO}	SPIMISO Hold Time		20			ns

Figure 18 SPI Timing Diagram

Timers

Block Diagrams

Figure 19 PWM Timers Block Diagram

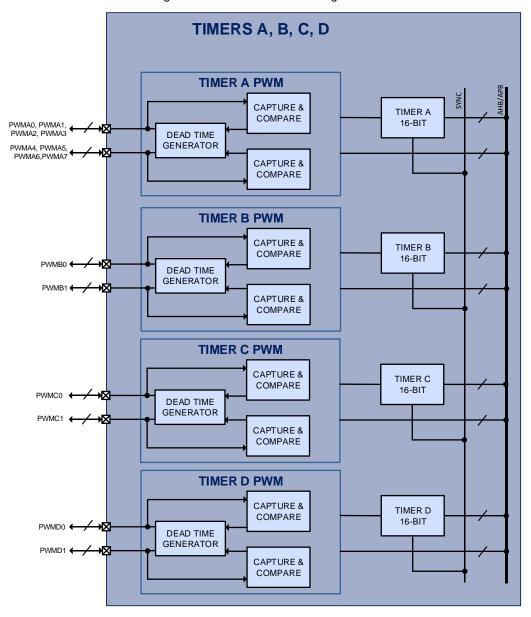


Figure 20 AFE Watchdog and Wake-up Timer Block Diagram

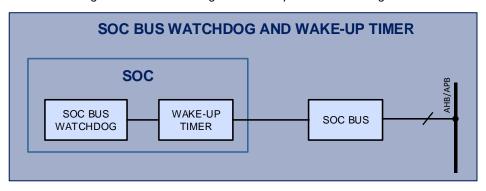
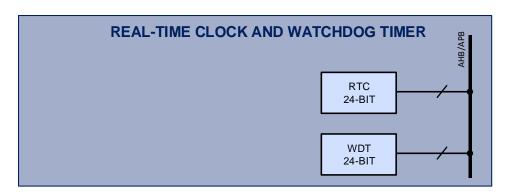



Figure 21 Real-time Clock and Watchdog Timer Block Diagram

Functional Description

The device includes 9 timers: timer A, timer B, timer C, timer D, watchdog timer 1 (WDT), watchdog timer 2, wake-up timer, real-time clock (RTC), and SysTick timer. The device supports up to 14 different PWM signals and has up to 7 dead-time controllers. Timers A, B, C and D can be concatenated to synchronize to a single clock and start/stop signal for applications that require a synchronized timer period between timers.

Timer A

Timer A is a general purpose 16-bit timer with 8 PWM/capture and compare units. It has 4 pairs of PWM signals going into 4 dead-time controllers. Timer A can be concatenated with timers B, C, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128.

Timer B

Timer B is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller, as well as 2 additional compare units that can be used for additional system time bases for interrupts. Timer B can be concatenated with timers A, C, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128.

Timer C

Timer C is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller. Timer C can be concatenated with timers A, B, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128.

Timer D

Timer D is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller. Timer D can be concatenated with timers A, B, and C to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128.

Watchdog Timer

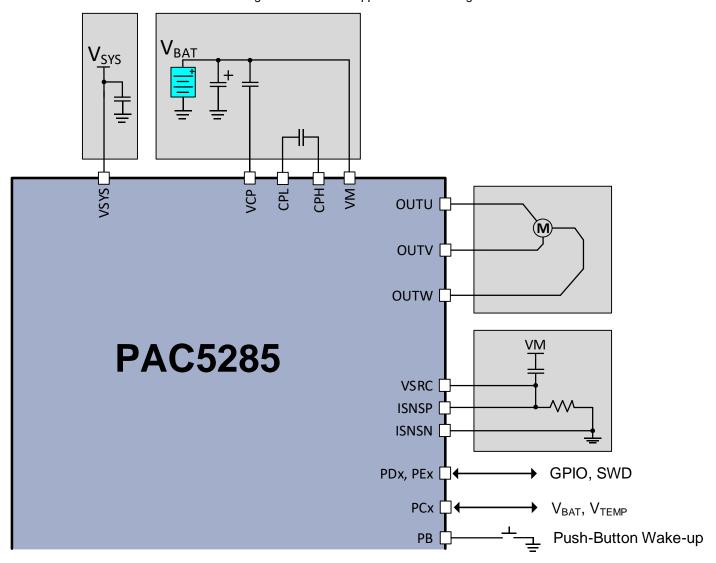
The 24-bit watchdog timer (WDT) can be used for long time period measurements or periodic wake up from sleep mode. The watchdog timer can be used as a system watchdog, or as an interval timer, or both. The watchdog timer can use either FRCLK or FCLK as clock input with an additional clock divider from /2 to /65536.

CAFE Watchdog Timer

There is a second watchdog timer in the AFE that can be used to monitor communication between the MCU and AFE on the PAC SOC bus. If this timer expires, it will trigger a device reset when there is no communication for a period of either 4s or 8s.

Wake-Up Timer

The wake-up timer can be used for very low power hibernate and sleep modes to wake up the micro controller periodically. It can be configured to be 125ms, 250ms, 500ms, 1s, 2s, 4, or 8s.


Real-Time Clock

The 24-bit real-time clock (RTC) can be used for time measurements when an accurate clock source is used. This timer can also be used for periodic wake up from sleep mode. The RTC uses FRCLK as clock input with an additional clock divider from /2 to /65536.

Application Block Diagram

Figure 22 PAC5285 Application Block Diagram

Application Reference Schematic

	Figure 23 PAC5285 Application Reference Schematic		
(F to price on the depicts			

Thermal Characteristics

Table 16 Thermal Characteristics

SYMBOL	PARAMETER	VALUE	UNIT
T _A	Operating ambient temperature range	-40 to 105	°C
T_J	Operating junction temperature range	-40 to 125	°C
T _{STG}	Storage temperature range	-55 to 150	°C
	Lead temperature (Soldering, 10 seconds)	300	°C
Θ_{JC}	Junction-to-case thermal resistance	2.897	°C/W
Θ_{JA}	Junction-to-ambient thermal resistance	23.36	°C/W

Pin Configuration and Description

Figure 24 Pin Diagram - Top View

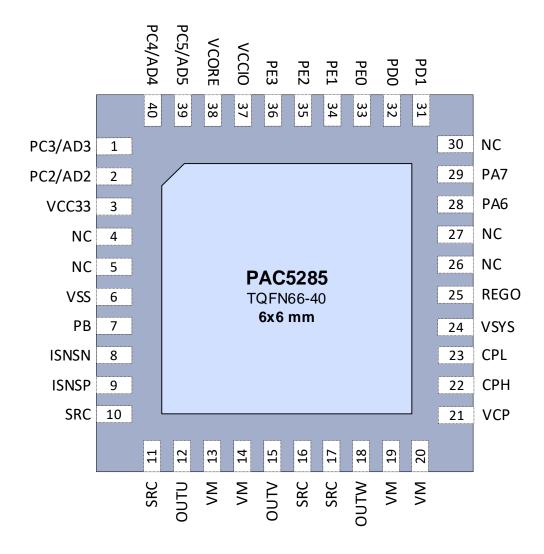
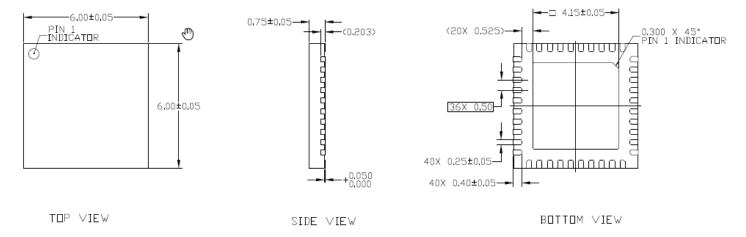


Table 17 – Pin Descriptions

Pin Number	Label	Description
1	PC3/AD3	IO port PC3 or ADC channel AD3.
2	PC2/AD2	IO port PC2 or ADC channel AD2.
3	VCC33	Internally generated 3.3V power supply. Connect to a 10V/1µF ceramic capacitor from VCC33 to VSS close to the device.
4	NC	Not connected. Leave floating.
5	NC	Not connected. Leave floating.
6	VSS	Ground.
7	PB	Active-low push-button for hibernate wake-up.
8	ISNSN	Motor current sense, negative terminal.
9	ISNSP	Motor current sense, positive terminal.
10	SRC	Inverter source node, connect to ISNSP.
11	SRC	Inverter source node, connect to ISNSP.
12	OUTU	Phase U output.
13	VM	Main power supply (Motor Voltage).
14	VM	Main power supply (Motor Voltage).
15	OUTV	Phase V output.
16	SRC	Inverter source node, connect to ISNSP.
17	SRC	Inverter source node, connect to ISNSP.
18	OUTW	Phase W output.
19	VM	Main power supply (Motor Voltage).
20	VM	Main power supply (Motor Voltage). Connect a high value electrolytic capacitor in parallel with a 0.1µF ceramic capacitor from VM to VSS. This pin requires good capacitive bypass to VSS with a trace shorter than 10mm from this pin.
21	VCP	Charge Pump output. Connect a 10V/1µF ceramic capacitor between the VCP and VM pins.
22	СРН	Charge pump switch node. Connect a VM * 1.5V rated 0.1 µF flying capacitor between CPL and CPH.
23	CPL	Charge pump switch node. Connect a VM * 1.5V rated 0.1µF flying capacitor between CPL and CPH.
24	VSYS	Internally generated 5V power supply. Connect to a 10V/4.7µF ceramic capacitor from VSYS to VSS close to the device.
25	REGO	System Regulator Output; connect to VSYS externally through an appropriate resistor.
26	NC	Not connected. Leave floating.
27	NC	Not connected. Leave floating.
28	PA6	IO port PA6.
29	PA7	IO port PA7.
30	NC	Not connected. Leave floating.
31	PD1	IO port PD1.
32	PD0	IO port PD0.
33	PE0	IO port PE0.
34	PE1	IO port PE1.
35	PE2	IO port PE2.
36	PE3	IO port PE3.

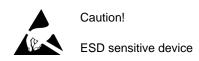

Pin Number	Label	Description
37	VCCIO	Internally generated 3.3V power supply. For 3.3V IO, connect to a 10V/1µF ceramic capacitor from VCCIO to VCC close to the device. For 5V power supply, connect to VSYS.
38	VCORE	Internally generated digital 1.8V power supply. Connect a 6.3V/1µF ceramic capacitor from VCORE to VSS close to the device.
39	PC5/AD5	IO port PC5 or ADC channel AD5.
40	PC4/AD4	IO port PC4 or ADC channel AD4.

Mechanical Information

Package Marking and Dimensions

Marking: Part number - PAC5285

Notes:


- 1. All dimensions are in mm. Angles are in degrees.
- 2. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 3. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

56 of 58

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1A	ESDA/JEDEC JS-001-2012
ESD - Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL – Moisture Sensitivity Level	Level 3	IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

REVISION HISTORY

Revision	Description
1.0	Initial release.
1.1	Updated VM OV threshold from 37V to 36V.
1.2	Updated pin 25 to REGO. Clarified Differential Amplifier diagrams and text.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020-2022 Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.