


# R0605250L

25dB Reverse Hybrid 5MHz to 65MHz (Low Current)

The R0605250L is a hybrid reverse amplifier. The part employs a silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5MHz to 65MHz CATV amplifiers for reverse channel systems.



# **Ordering Information**

R0605250L Box with 50 pieces

# **Absolute Maximum Ratings**

| Parameter                           | Rating      | Unit |
|-------------------------------------|-------------|------|
| RF Input Voltage (single tone)      | 65          | dBmV |
| DC Supply Over-Voltage (5 minutes)  | 30          | V    |
| Storage Temperature                 | -40 to +100 | °C   |
| Operating Mounting Base Temperature | -30 to +100 | °C   |



#### Package: SOT-115J

#### **Features**

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 25.4dB Typical Gain at 65MHz
- 140mA Max. at 24VDC

#### **Applications**

 5MHz to 65MHz CATV Amplifier For Reverse Channel Systems



RoHS

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implie

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS140127 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. RF MICRO DEVICES<sup>®</sup> and RFMD<sup>®</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

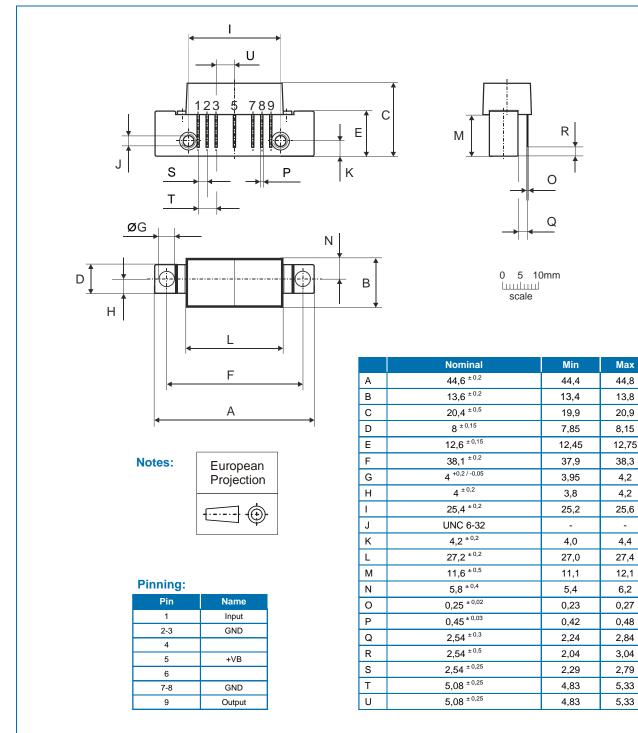


# **Nominal Operating Parameters**

| Parameter                      | Spe   | ecificat | ion   | Unit | Unit                                                                    | Condition |
|--------------------------------|-------|----------|-------|------|-------------------------------------------------------------------------|-----------|
| Farameter                      | Min   | Тур      | Max   |      | Condition                                                               |           |
| General Performance            |       |          |       |      | V+ = 24V; $T_{MB}$ = 30°C; $Z_{S}$ = $Z_{L}$ = 75 $\Omega$              |           |
| Power Gain                     | 24.5  | 25.3     | 25.5  | dB   | f = 5MHz                                                                |           |
|                                | 24.3  | 25.4     |       | dB   | f = 65MHz                                                               |           |
| Slope <sup>[1]</sup>           | -0.2  | 0.1      | 0.5   | dB   | f = 5MHz to 65MHz                                                       |           |
| Flatness of Frequency Response |       |          | ±0.2  | dB   | f = 5MHz to 65MHz (peak to valley)                                      |           |
| Input Return Loss              | -20.0 |          |       | dB   | f = 5MHz to 65MHz                                                       |           |
| Output Return Loss             | -20.0 |          |       | dB   |                                                                         |           |
| Noise Figure                   |       | 3.1      | 3.4   | dB   | f = 65MHz                                                               |           |
| Total Current Consumption (DC) | 125.0 | 133      | 140.0 | mA   |                                                                         |           |
| Distortion Data 5MHz to 65MHz  |       |          |       |      | V+ = 24V; T <sub>MB</sub> = 30°C; Z <sub>S</sub> = Z <sub>L</sub> = 75Ω |           |
| СТВ                            |       |          | -69   | dBc  |                                                                         |           |
| XMOD                           |       |          | -59   | dBc  | 7 ch flat; $V_0 = 50$ dBm $V^{[2]}$                                     |           |
| CSO                            |       |          | -70   | dBc  |                                                                         |           |

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 7 channels, NTSC frequency raster: T7 - T13 (7.0MHz to 43MHz), +50dBmV flat output level.


Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.



# Package Drawing (Dimensions in millimeters)



RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140127

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.