

LMP8646

ZHCSDM7B-FEBRUARY 2012-REVISED DECEMBER 2014

Support &

Community

20

LMP8646 精密限流器

Technical

Documents

Sample &

🖥 Buy

特性 1

- 提供电路保护和限流功能
- 单电源供电
- -2V 至 76V 共模电压范围
- 可变增益(由外部电阻设置)
- 可调节带宽(由外部电容设置)
- 缓冲输出
- V_{SENSE} = 100mV 时可获得 3% 的输出精度
- 主要技术规格: •
 - 电源电压范围为 2.7V 至 12V
 - 输出电流(拉电流): 0 至 5mA
 - 增益精度: 2.0% (最大值)
 - 跨导: 200µA/V
 - 偏移: ±1mV (最大值)
 - 静态电流: 380µA
 - 输入偏置: 12µA (典型值)
 - 电源抑制比 (PSRR): 85dB
 - 共模抑制比 (CMRR): 95dB
 - 温度范围: -40℃ 至 125℃
 - 6 引脚小外形尺寸晶体管 (SOT) 封装

- 2 应用
- 高侧和低侧限流
- 电路故障保护 •
- 电池和超级电容充电 •

Tools &

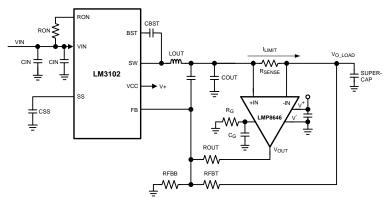
Software

- 发光二极管 (LED) 恒流驱动
- 电源管理 •

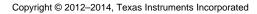
3 说明

LMP8646 是一款精密限流器,可利用任意开关或线性 稳压器提供的反馈节点为其提高限流精度。

LMP8646 支持 -2V 至 76V 共模电压范围内的输入信 号。该器件具有可变增益,可用于调节感测电流。 该 增益通过单个外部电阻 R_G 进行配置,可提供较高的灵 活性以及高达 2% 的精度。该器件带宽是可调节的 (通过与 R_G 并联的单个外部电容进行配置),因此适 用于各类应用。此外,其输出将进行缓冲,从而提供 低输出阻抗。


LMP8646 对于需要电路保护和改进型精密系统的工 业、汽车、电信和消费类应用而言无疑是理想选择。 LMP8646 采用 6 引脚 SOT 封装, 额定工作温度范围 为-40°C 至 125°C。

器件信息(1)


器件型号	封装	封装尺寸(标称值)
LMP8646	SOT (6)	2.90mm x 1.60mm

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

Page

目录

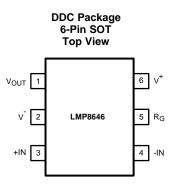
1	特性	
2	应用	
3	说明	1
4	修订	历史记录 2
5	Pin	Configuration and Functions
6	Spe	cifications
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics: 2.7 V 5
	6.6	Electrical Characteristics: 5 V 6
	6.7	Electrical Characteristics: 12 V 7
	6.8	Typical Characteristics 8
7	Deta	ailed Description 13
	7.1	Overview 13

	7.2	Functional Block Diagram	13
	7.3	Feature Description	13
	7.4	Device Functional Modes	15
8	Арр	lication and Implementation	17
	8.1	Application Information	17
	8.2	Typical Applications	17
9	Pow	ver Supply Recommendations	23
10	Lay	out	23
	10.1	Layout Guidelines	23
		Layout Example	
11	器件	和文档支持	24
	11.1	商标	24
	11.2	静电放电警告	24
	11.3	Glossary	24
12		、封装和可订购信息	

4 修订历史记录

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (March 2013) to Revision B


•	已添加 引脚配置和功能部分,	处理额定值表,	特性描述部分,	器件功能模式,	应用和实施部分,	电源相关建议部分,	
	布局部分,器件和文档支持部	分以及机械、封	装和可订购信息	部分			1

Cł	Changes from Original (March 2013) to Revision A		
•	Changed layout of National Data Sheet to TI format	2	2

LMP8646 ZHCSDM7B – FEBRUARY 2012 – REVISED DECEMBER 2014

5 Pin Configuration and Functions

Pin Functions

PIN		DESCRIPTION
NAME	NO.	DESCRIPTION
V _{OUT}	1	Single-Ended Output Voltage
V-	2	Negative Supply Voltage. This pin should be connected to ground.
+IN	3	Positive Input
-IN	4	Negative Input
R _G	5	External Gain Resistor. An external capacitance (C _G) may be added in parallel with R _G to limit the bandwidth.
V+	6	Positive Supply Voltage

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽¹⁾

	MIN	MAX	UNIT
Supply Voltage ($V_S = V^+ - V^-$)		13.2	V
Differential voltage +IN- (-IN)		6	V
Voltage at pins +IN, -IN	-6	80	V
Voltage at R _G pin		13.2	V
Voltage at OUT pin	V-	V+	V
Junction Temperature ⁽²⁾		150	°C
Storage temperature range	-65	150	°C
For soldering specifications see SNOA549			·

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics: 2.7 V tables.

(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{J(MAX)}, θ_{JA}, and the ambient temperature, T_A. The maximum allowable power dissipation P_{DMAX} = (T_{J(MAX)} - T_A)/ θ_{JA} or the number given in Absolute Maximum Ratings, whichever is lower.

6.2 ESD Ratings

				VALUE	UNIT
V _(ESD)		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	Pins +IN and -IN	±4000	
	Electrostatic discharge	ANSI/ESDA/JEDEC JS-001	All pins except +IN and - IN	±2000	
		Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$		±1250	
		Machine model		±250	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

	MIN	MAX	UNIT
Supply Voltage ($V_S = V^+ - V^-$)	2.7	12	V
Temperature Range ⁽¹⁾	-40	125	V

(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J(MAX)}$, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation $P_{DMAX} = (T_{J(MAX)} - T_A)/\theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower.

6.4 Thermal Information

	LMP8646	
THERMAL METRIC ⁽¹⁾	DDC	UNIT
	6 PINS	
R _{0JA} Junction-to-ambient thermal resistance	96	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: 2.7 V

Unless otherwise specified, all limits ensured for at $T_A = 25^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$, $-2 \text{ V} < V_{CM} < 76 \text{ V}$, $R_G = 10^{\circ}$ C, $V_S = (V^+ - V^-) = (2.7 \text{ V} - 0 \text{ V}) = 2.7 \text{ V}$ 25 k Ω , R₁ = 10 k Ω .⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
VOFFSET	Input Offset Voltage	V _{CM} = 2.1 V	-1		1	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$	-1.7		1.7	mV
TCV _{OS}	Input Offset Voltage Drift ⁽⁴⁾⁽⁵⁾	V _{CM} = 2.1 V			7	μV/°C
I _B	Input Bias Current ⁽⁶⁾	V _{CM} = 2.1 V		12	20	μA
e _{ni}	Input Voltage Noise ⁽⁵⁾	$f > 10 \text{ kHz}, R_G = 5 \text{ k}\Omega$		120		nV/√Hz
V _{SENSE}	Max Input Sense Voltage ⁽⁵⁾	V_{CM} = 12 V, R_G = 5 k Ω			600	mV
Gain A _V	Adjustable Gain Setting ⁽⁵⁾	V _{CM} = 12 V	1		100	V/V
Gm	Transconductance = 1/R _{IN}	V _{CM} = 2.1 V		200		µA/V
	Accuracy	V _{CM} = 2.1 V	-2%		2%	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$	-3.4%		3.4%	
	Gm drift ⁽⁵⁾	−40°C to 125°C, V _{CM} = 2.1 V			140	ppm /°C
PSRR	Power Supply Rejection Ratio	$V_{CM} = 2.1 \text{ V}, 2.7 \text{ V} < \text{V}^+ < 12 \text{ V}$	85			dB
CMRR	Oursean Marke Datastica Datis	2.1 V < V _{CM} < 76 V	95			
	Common-Mode Rejection Ratio	–2 V <v<sub>CM < 2.1 V</v<sub>	55			dB
SR	Slew Rate ⁽⁷⁾⁽⁵⁾	V_{CM} = 5 V, C_{G} = 4 pF, V_{SENSE} from 25 mV to 175 mV, C_{L} = 30 pF, R_{L} = 1M Ω		0.5		V/µs
ls	Supply Current	V _{CM} = 2.1 V		380	610	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$			807	
		$V_{CM} = -2 V$		2000	2500	uA
		$V_{CM} = -2 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$			2700	
V _{OUT}	Maximum Output Voltage	$V_{CM} = 2.1 \text{ V}, \text{ R}_{G} = 500 \text{ k}\Omega$	1.1			V
	Minimum Output Voltage	V _{CM} = 2.1 V			20	mV
	Maximum Output Voltage	$VS = V_{CM} = 3.3 V$, $R_G = 500 k\Omega$	1.6			V
	Minimum Output Voltage	$VS = V_{CM} = 3.3 V, R_{G} = 500 k\Omega$			22	mV
I _{OUT}	Output current ⁽⁵⁾	Sourcing, V_{OUT} = 600 mV, R_G = 150 k Ω		5		mA
C _{LOAD}	Max Output Capacitance Load ⁽⁵⁾			30		pF

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

(2)

All limits are specified by testing, design, or statistical analysis. Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and (3) will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

Offset voltage temperature drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature (4) change.

This parameter is specified by design and/or characterization and is not tested in production. (5)

Positive Bias Current corresponds to current flowing into the device. (6)

(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.

XAS STRUMENTS

LMP8646

ZHCSDM7B-FEBRUARY 2012-REVISED DECEMBER 2014

www.ti.com.cn

6.6 Electrical Characteristics: 5 V

Unless otherwise specified, all limits ensured for at $T_A = 25^{\circ}$ C, $V_S = V^+-V^-$, $V^+ = 5$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_a = 25$ kΩ, $R_{I} = 10 \text{ k}\Omega.^{(1)}$

	PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
VOFFSET	Input Offset Voltage	V _{CM} = 2.1 V	-1		1	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$	-1.7		1.7	mV
TCV _{OS}	Input Offset Voltage Drift ⁽⁴⁾⁽⁵⁾	V _{CM} = 2.1 V			7	µV/°C
IB	Input Bias Current ⁽⁶⁾	V _{CM} = 2.1 V		12.5	22	μA
e _{ni}	Input Voltage Noise ⁽⁵⁾	f > 10 kHz, $R_G = 5 k\Omega$		120		nV/√Hz
V _{SENSE(MAX)}	Max Input Sense Voltage ⁽⁵⁾	V_{CM} = 12 V, R_G = 5 k Ω		600		mV
Gain A _V	Adjustable Gain Setting ⁽⁵⁾	V _{CM} = 12 V	1		100	V/V
Gm	Transconductance = $1/R_{IN}$	V _{CM} = 2.1 V		200		μA/V
	Accuracy	V _{CM} = 2.1 V	-2%		2%	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$	-3.4%		3.4%	
	Gm drift ⁽⁵⁾	-40°C to 125°C, V _{CM} = 2.1 V			140	ppm /°C
PSRR	Power Supply Rejection Ratio	$V_{CM} = 2.1 \text{ V}, 2.7 \text{ V} < \text{V}^+ < 12 \text{ V},$	85			dB
CMRR	Common-Mode Rejection Ratio	2.1 V <v<sub>CM < 76 V</v<sub>	95			dB
		$-2 V < V_{CM} < 2.1 V$	55			uБ
SR	Slew Rate ⁽⁷⁾⁽⁵⁾	V_{CM} = 5 V, C_G = 4 pF, V_{SENSE} from 100 mV to 500 mV, C_L = 30 pF, R_L = 1M Ω		0.5		V/µs
I _S	Supply Current	V _{CM} = 2.1 V		450	660	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			939	
		$V_{CM} = -2 V$		2100	2800	uA
		$V_{CM} = -2 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$			3030	
V _{OUT}	Maximum Output Voltage	V_{CM} = 5 V, R _G = 500 k Ω	3.3			V
	Minimum Output Voltage	V _{CM} = 2.1 V			22	mV
IOUT	Output current ⁽⁵⁾	Sourcing, V_{OUT} = 1.65 V, R_G = 150 k Ω		5		mA
C _{LOAD}	Max Output Capacitance Load ⁽⁵⁾			30		pF

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. All limits are specified by testing, design, or statistical analysis. Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and

(2)

(3)will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

Offset voltage temperature drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature (4) change.

This parameter is specified by design and/or characterization and is not tested in production. (5)

Positive Bias Current corresponds to current flowing into the device. (6)

(7)The number specified is the average of rising and falling slew rates and measured at 90% to 10%.

6.7 Electrical Characteristics: 12 V

Unless otherwise specified, all limits ensured for at $T_A = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 12$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 12$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 12$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 12$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^+ = 12$ V, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V^- = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V_S = 0$ V, $V_S = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = V^+ - V^-$, $V_S = 0$ V, $V_S = 0$ V, -2 V < V_{CM} < 76 V, $R_q = 25^{\circ}$ C, $V_S = 0$ V, $V_S = 0$ $k\Omega, R_{I} = 10 \ k\Omega.^{(1)}$

	PARAMETER	TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
VOFFSET	Input Offset Voltage	V _{CM} = 2.1 V	-1		1	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$	-1.7		1.7	mV
TCV _{OS}	Input Offset Voltage Drift ⁽⁴⁾⁽⁵⁾	V _{CM} = 2.1 V			7	μV/°C
Ι _Β	Input Bias Current ⁽⁶⁾	V _{CM} = 2.1 V		13	23	μA
e _{ni}	Input Voltage Noise ⁽⁵⁾	$f > 10 \text{ kHz}, R_G = 5 \text{ k}\Omega$		120		nV/√Hz
V _{SENSE(MAX)}	Max Input Sense Voltage ⁽⁵⁾	V_{CM} =12 V, R_{G} = 5 k Ω		600		mV
Gain A _V	Adjustable Gain Setting ⁽⁵⁾	V _{CM} = 12 V	1		100	V/V
Gm	Transconductance = $1/R_{IN}$	V _{CM} = 2.1 V		200		μA/V
	Accuracy	V _{CM} = 2.1 V	-2%		2%	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$	-3.4%		3.4%	
	Gm drift ⁽⁵⁾	-40°C to 125°C, V _{CM} =2.1 V			140	ppm /°C
PSRR	Power Supply Rejection Ratio	$V_{CM} = 2.1 \text{ V}, 2.7 \text{ V} < \text{V}^+ < 12 \text{ V}$	85			dB
CMRR	Common-Mode Rejection Ratio	2.1 V < V _{CM} < 76 V	95			٩D
		$-2 V < V_{CM} < 2.1 V$	55			dB
SR	Slew Rate ⁽⁷⁾⁽⁵⁾	V_{CM} = 5 V, C_{G} = 4 pF, V_{SENSE} from 100 mV to 500 mV, C_{L} = 30 pF, R_{L} =1 M Ω		0.6		V/µs
I _S	Supply Current	V _{CM} = 2.1 V		555	845	
		$V_{CM} = 2.1 \text{ V}, -40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$			1123	
		$V_{CM} = -2 V$		2200	2900	uA
		$_{CM}$ = -2 V, -40°C ≤ T _J ≤ 125°C			3110	
V _{OUT}	Maximum Output Voltage	$V_{CM} = 12 \text{ V}, \text{ R}_{G} = 500 \text{ k}\Omega,$	10			V
	Minimum Output Voltage	V _{CM} = 2.1 V			24	mV
I _{OUT}	Output current ⁽⁵⁾	Sourcing, V_{OUT} = 5.25 V, R_G = 150 k Ω		5		mA
C _{LOAD}	Max Output Capacitance Load ⁽⁵⁾			30		pF

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No assurance of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. All limits are specified by testing, design, or statistical analysis. Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and

(2)

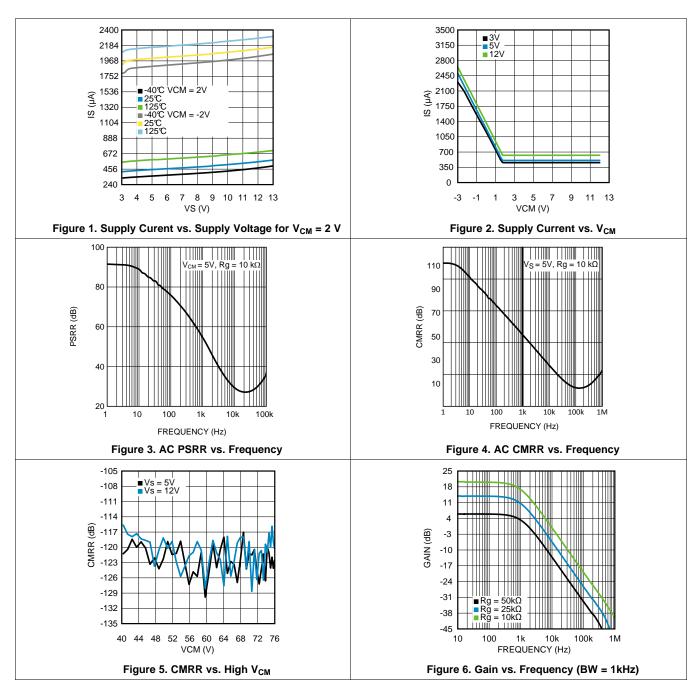
(3) will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

(4) Offset voltage temperature drift is determined by dividing the change in V_{OS} at the temperature extremes by the total temperature change.

This parameter is specified by design and/or characterization and is not tested in production. (5)

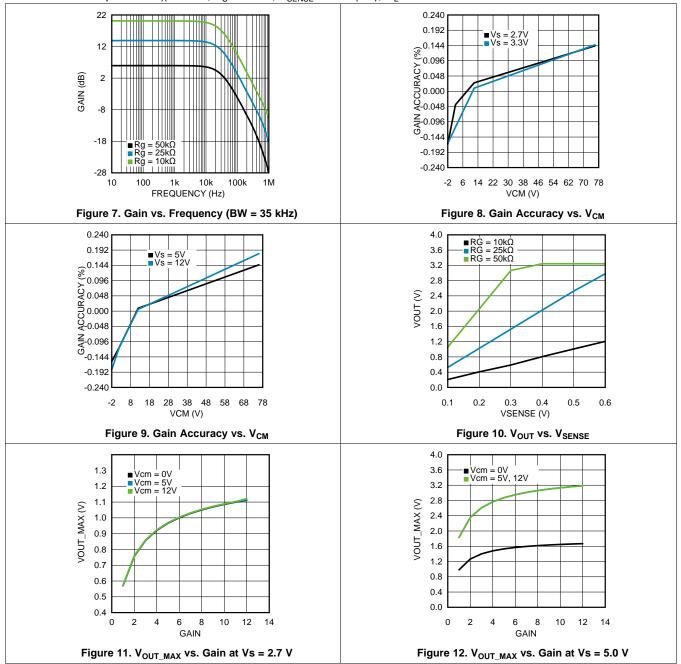
Positive Bias Current corresponds to current flowing into the device. (6)

(7)The number specified is the average of rising and falling slew rates and measured at 90% to 10%.

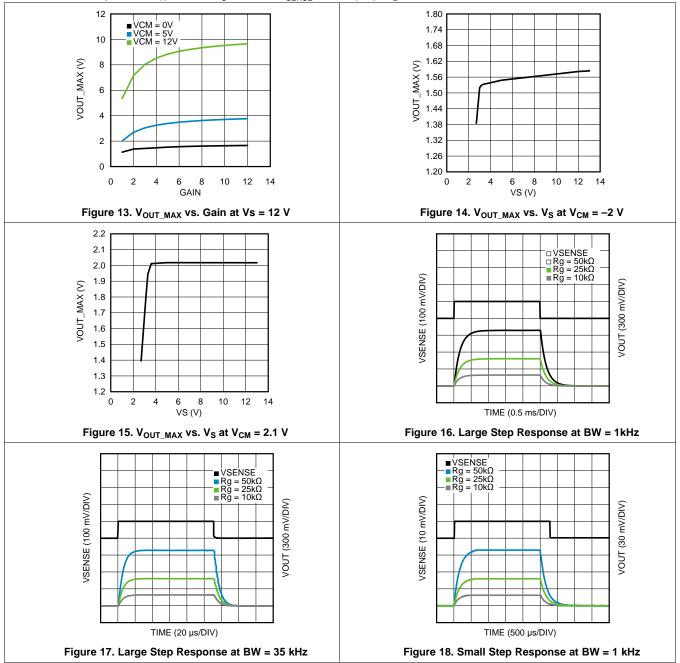

TEXAS INSTRUMENTS

LMP8646

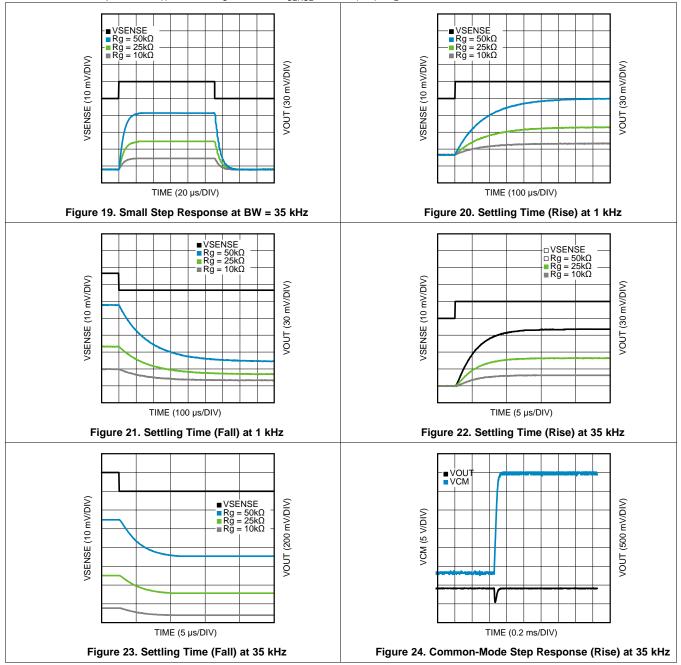
ZHCSDM7B-FEBRUARY 2012-REVISED DECEMBER 2014


www.ti.com.cn

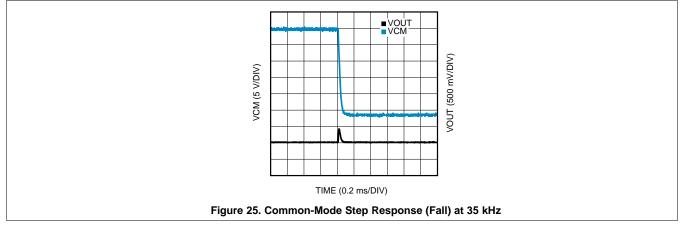
6.8 Typical Characteristics



Typical Characteristics (continued)



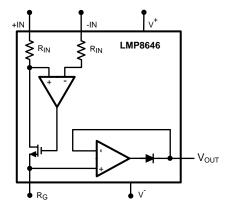
Typical Characteristics (continued)


Typical Characteristics (continued)

Texas Instruments

www.ti.com.cn

Typical Characteristics (continued)



7 Detailed Description

7.1 Overview

The LMP8646 is a single-supply precision current limiter with variable gain selected through an external resistor (R_G) and a variable bandwidth selected through an external capacitor (C_G) in parallel with R_G . Its common-mode of operation is –2 V to 76 V, and the LMP8646 has an buffered output to provide a low-output impedance. More details of the LMP8646's functional description can be seen in the following subsections.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Theory of Operation

As seen from Figure 26, the sense current flowing through R_{SENSE} develops a voltage drop equal to V_{SENSE} . The high impedance inputs of the amplifier does not conduct this current and the high open-loop gain of the sense amplifier forces its noninverting input to the same voltage as the inverting input. In this way the voltage drop across R_{IN} matches V_{SENSE} . The current I_{IN} flowing through R_{IN} has the following equation:

 $I_{IN} = V_{SENSE} / R_{IN} = R_{SENSE} * I_{SENSE} / R_{IN}$

where

•
$$R_{IN} = 1/Gm = 1/(200 \ \mu A/V) = 5 \ kOhm$$
 (1)

 I_{IN} flows entirely across the external gain resistor R_G to develop a voltage drop equal to: $V_{RG} = I_{IN}^* R_G = (V_{SENSE}/R_{IN})^* R_G = [(R_{SENSE}^* I_{SENSE}) / R_{IN}]^* R_G$ (2)

This voltage is buffered and showed at the output with a very low impedance allowing a very easy interface of the LMP8646 with the feedback of many voltage regulators. This output voltage has the following equation:

$V_{OUT} = V_{RG} = [(R_{SENSE} * I_{SENSE}) / R_{IN}] * R_{G}$	(3)
$V_{OUT} = V_{SENSE} * R_G / R_{IN}$	(4)
V _{OUT} = V _{SENSE} * R _G /(5 kOhm)	(5)
V _{OUT} = V _{SENSE} * Gain	

where

• Gain = R_G/R_{IN}

(6)

Feature Description (continued)

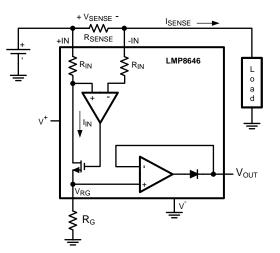


Figure 26. Current Monitor

7.3.1.1 Maximum Output Voltage, V_{OUT_MAX}

The maximum output voltage, V_{OUT_MAX} , depends on the supply voltage, $V_S = V^+ - V^-$, and on the common-mode voltage, $V_{CM} = (+IN + -IN) / 2$.

The following subsections show three cases to calculate for $V_{\text{OUT}\ \text{MAX}}$.

7.3.1.1.1 Case 1: $-2 V < V_{CM} < 1.8 V$, and $V_S > 2.7 V$

If $V_S \ge 5 V$,

then $V_{OUT_MAX} = 1.3$ V.

Else if
$$Vs = 2.7 V$$
,

then $V_{OUT MAX} = 1.1 V$.

7.3.1.1.2 Case 2: 1.8 V < V_{CM} < V_{S} , and V_{S} > 3.3 V

In this case, V_X is a fixed value that depends on the supply voltage. V_X has the following values:

 $\label{eq:stars} \begin{array}{l} \mbox{If } V_S = 12 \mbox{ V, then } V_X = 10 \mbox{ V.} \\ \mbox{Else if } V_S = 5 \mbox{ V, then } V_X = 3.3 \mbox{ V.} \\ \mbox{Else if } V_S = 2.7 \mbox{ V, then } V_X = 1.1 \mbox{ V.} \\ \mbox{If } V_X \leq (V_{CM} - V_{SENSE} - 0.25) \mbox{ ,} \\ \mbox{then } V_{OUT_MAX} = V_X. \\ \mbox{Else,} \\ \mbox{V}_{OUT_MAX} = (V_{CM} - V_{SENSE} - 0.25). \end{array}$

For example, if $V_{CM} = 4 \text{ V}$, $V_S = 5 \text{ V}$ (and thus $V_X = 3.3 \text{ V}$), $V_{SENSE} = 0.1 \text{ V}$, then $V_{OUT_MAX} = 3.3 \text{ V}$ because 3.3 V $\leq (4 - 0.1 - 0.25)$.

7.3.1.1.3 Case 3: $V_{CM} > V_S$, and $V_S > 2.7 V$

If V_S = 12 V, then V_{OUT_MAX} = 10 V. Else if V_S = 5 V, then V_{OUT_MAX} = 3.3 V . Else if V_S = 2.7 V, then V_{OUT_MAX} = 1.1 V.

7.4 Device Functional Modes

7.4.1 Output Accuracy

The output accuracy is the device error contributed by the LMP8646 based on its offset and gain errors. The LMP8646 output accuracy has the following equations:

$$\begin{aligned} \text{Output Accuracy} &= \left| \frac{V_{\text{OUT_THEO}} - V_{\text{OUT_CAL}}}{V_{\text{OUT_THEO}}} \right| \text{ x 100(\%)} \\ \text{where } V_{\text{OUT_THEO}} &= (V_{\text{SENSE}}) \text{ x } \frac{R_{\text{G}}}{1/\text{Gm}} \\ \text{and } V_{\text{OUT_CALC}} &= \frac{(V_{\text{SENSE}} + V_{\text{OFFSET}}) \text{ x } R_{\text{G}}}{1/[\text{Gm } (1 + \text{Gm_Accuracy})]} \end{aligned}$$

Output Accuracy Equations

(7)

For example, assume $V_{SENSE} = 100 \text{ mV}$, $R_G = 10 \text{ kOhm}$, and it is known that $V_{OFFSET} = 1 \text{ mV}$ and $Gm_Accuracy = 2\%$ (Electrical Characteristics Table), then the output accuracy can be calculated as:

$$V_{OUT_THEO} = (100 \text{ mV}) \times \frac{10 \text{ k}\Omega}{1/(200\mu)} = 0.2\text{V}$$
$$V_{OUT_CALC} = \frac{(100 \text{ mV} + 1 \text{ mV}) \times 10 \text{ k}\Omega}{1/[200\mu (1 + 2/100)]} = 0.20604\text{V}$$
$$Output \text{ Accuracy} = \left|\frac{0.2\text{V} - 0.20604\text{V}}{0.2\text{V}}\right| \times 100 = 3.02\%$$

Output Accuracy Example

(8)

In fact, as V_{SENSE} decreases, the output accuracy worsens as seen in Figure 27. These equations provide a valuable tool to estimate how the LMP8646 affects the overall system performance. Knowing this information allows the system designer to pick the appropriate external resistances (R_{SENSE} and R_G) to adjust for the tolerable system error. Examples of this tolerable system error can be seen in the next sections.

10.0

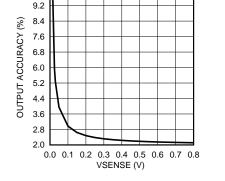


Figure 27. Output Accuracy vs. V_{SENSE}

7.4.2 Selection of the Sense Resistor, R_{SENSE}

The accuracy of the current measurement also depends on the value of the shunt resistor R_{SENSE} . Its value depends on the application and is a compromise between small-signal accuracy and maximum permissible voltage loss in the load line.

 R_{SENSE} is directly proportional to V_{SENSE} through the equation $R_{SENSE} = (V_{SENSE}) / (I_{SENSE})$. If V_{SENSE} is small, then there is a smaller voltage loss in the load line, but the output accuracy is worse because the LMP8646 offset error will contribute more. Therefore, high values of R_{SENSE} provide better output accuracy by minimizing the effects of offset, while low values of R_{SENSE} minimize the voltage loss in the load line. For most applications, best performance is obtained with an R_{SENSE} value that provides a V_{SENSE} of 100 mV to 200 mV.

Copyright © 2012–2014, Texas Instruments Incorporated

Device Functional Modes (continued)

7.4.2.1 R_{SENSE} Consideration for System Error

The output accuracy described in the previous section talks about the error contributed just by the LMP8646. The system error, however, consists of the errors contributed by the LMP8646 as well as other external resistors such as R_{SENSE} and R_G . Let's rewrite the output accuracy equation for the system error assuming that R_{SENSE} is non-ideal and R_G is ideal. This equation can be seen as:

System Error =
$$\left| \frac{V_{OUT_THEO} - V_{OUT_CAL}}{V_{OUT_THEO}} \right| \times 100(\%)$$

where $V_{OUT_THEO} = (R_{SENSE} \times I_{SENSE}) \times \frac{R_G}{1/Gm}$
and $V_{OUT_CALC} = \frac{[R_{SENSE} (1+Tolerance) \times I_{SENSE} + V_{OFFSET}] \times R_G}{1/[Gm (1 + Gm_Accuracy)]}$

System Error Example Assuming R_{SENSE} is Non-ideal and R_G is Ideal

(9)

Continuing from the previous output accuracy example, we can calculate for the system error assuming that $R_{SENSE} = 100$ mOhm (with 1% tolerance), $I_{SENSE} = 1A$, and $R_G = 10$ kOhm. From the Electrical Characteristics Table, it is also known that $V_{OFFSET} = 1$ mV and Gm_Accuracy = 2%.

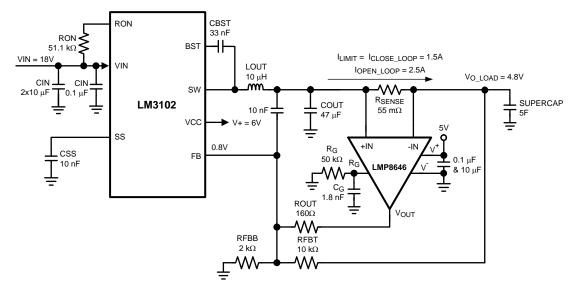
$$V_{OUT_THEO} = (100 \text{ m}\Omega \text{ x 1A}) \text{ x } \frac{10 \text{ k}\Omega}{1/(200\mu)} = 0.2\text{V}$$
$$V_{OUT_CALC} = \frac{[100 \text{ m}\Omega (1+1/100) \text{ x 1A} + 1\text{mV}] \text{ x 10 k}\Omega}{1/[200\mu (1+2/100)]} = 0.20808\text{V}$$
System Error = $\left|\frac{0.2\text{V} - 0.20808\text{V}}{0.2\text{V}}\right| \text{ x 100} = 4.04\%$

System Error Example Assuming RSENSE is Non-ideal and RG is Ideal

(10)

Because an R_{SENSE} tolerance will increase the system error, we recommend selecting an R_{SENSE} resistor with low tolerance.

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMP8646 can be driven by many different regulators with a feedback pin and connected to many different types of loads such as capacititve and resistive. The following sections gives three typical applications of the LMP8646.

8.2 Typical Applications

8.2.1 Application #1: Current Limiter With a Capacitive Load

Figure 28. SuperCap Application With LM3102 Regulator

8.2.1.1 Design Requirements

A supercap application requires a very high capacitive load to be charged. This example assumes the output capacitor is 5F with a limited sense current at 1.5A. The LM3102 will provide the current to charge the supercap, and the LMP8646 will monitor this current to make sure it does not exceed the desired 1.5A value.

8.2.1.2 Detailed Design Procedure

To limit the capacitor current, first connect the LMP8646 output to the feedback pin of the LM3102, as shown in Figure 28. This feedback voltage at the FB pin is compared to a 0.8V internal reference. Any voltage above this 0.8V means the output current is above the desired value of 1.5A, and the LM3102 will reduce its output current to maintain the desired 0.8V at the FB pin.

The following steps show the design procedures for this supercap application. In summary, the steps consist of selecting the components for the voltage regulator, integrating the LMP8646 and selecting the proper values for its gain, bandwidth, and output resistor, and adjusting these components to yield the desired performance.

Step 1: Choose the components for the Regulator.

Refer to the LM3102 evaluation board application note (AN-1646) to select the appropriate components for the LM3102 voltage regulator.

For example, assume the minimum LM3102 output voltage, V_{O REG MIN}, is 0.6V, then ROUT can be calculated as

(14)

Copyright © 2012–2014, Texas Instruments Incorporated

www.ti.com.cn

Typical Applications (continued)

Step 2: Choose the sense resistor, R_{SENSE}

R_{SENSE} sets the voltage V_{SENSE} between +IN and -IN and has the following equation:

 $R_{SENSE} = V_{OUT} / [(I_{LIMIT}) * (R_G / 5kOhm)]$

In general, R_{SENSE} depends on the output voltage, limit current, and gain. Refer to section *Selection of the Sense Resistor, R_{SENSE}* to choose the appropriate R_{SENSE} value; this example uses 55 mOhm.

Step 3: Choose the gain resistor, R_G, for LMP8646

 R_G is chosen from the limited sense current. As stated, $V_{OUT} = (R_{SENSE} * I_{LIMIT}) * (R_G / 5kOhm)$. Since $V_{OUT} = V_{FB} = 0.8V$, the limited sense current is 1.5A, and R_{SENSE} is 55 mOhm, R_G can be calculated as:

$$R_{G} = (V_{OUT} * 5 \text{ kOhm}) / (R_{SENSE} * I_{LIMIT})$$

 $R_{G} = (0.8 * 5 \text{ kOhm}) / (55 \text{ mOhm} * 1.5\text{A}) = 50 \text{ kOhm} (approximate)$ (13)

Step 4: Choose the Bandwidth Capacitance, C_G.

The product of C_G and R_G determines the bandwidth for the LMP8646. Refer to the Typical Performance Characteristics plots to see the range for the LMP8646 bandwidth and gain. Since each application is very unique, the LMP8646 bandwidth capacitance, C_G , needs to be adjusted to fit the appropriate application.

Bench data has been collected for the supercap application with the LM3102 regulator, and we found that this application works best for a bandwidth of 500 Hz to 3 kHz. Operating outside of this recommended bandwidth range might create an undesirable load current ringing. We recommend choosing a bandwidth that is in the middle of this range and using the equation $C_G = 1/(2*pi*R_G*Bandwidth)$ to find C_G . For example, if the bandwidth is 1.75 kHz and R_G is 50 kOhm, then C_G is approximately 1.8 nF. After this selection, capture the plot for I_{LIMIT} and adjust C_G until a desired load current plot is obtained.

Step 5: Calculate the Output Accuracy and Tolerable System Error

Since the LMP8646 is a precision current limiter, the output current accuracy is extremely important. This accuracy is affected by the system error contributed by the LMP8646 device error and other errors contributed by external resistances, such as R_{SENSE} and R_{G} .

In this application, $V_{SENSE} = I_{LIMIT} * R_{SENSE} = 1.5A * 55 \text{ mOhm} = 0.0825V$, and $R_G = 50 \text{ kOhm}$. From the Electrical Characteristics Table, it is known that $V_{OFFSET} = 1 \text{ mV}$ and $Gm_Accuracy = 2\%$. Using the equations shown in Equation 8, the output accuracy can be calculated as 3.24%.

After figuring out the LMP8646 output accuracy, choose a tolerable system error or the output current accuracy that is bigger than the LMP8646 output accuracy. This tolerable system error will be labeled as I_{ERROR} , and it has the equation $I_{ERROR} = (I_{MAX} - I_{LIMIT})/I_{MAX}$ (%). In this example, we will choose an I_{ERROR} of 5%, which will be used to calculate for ROUT shown in the next step.

Step 6: Choose the output resistor, ROUT

At start-up, the capacitor is not charged yet and thus the output voltage of the LM3102 is very small. Therefore, at start-up, the output current is at its maximum (I_{MAX}). When the output voltage is at its nominal, then the output current will settle to the desired limited value. Because a large current error is not desired, ROUT needs to be chosen to stabilize the loop with minimal initial start-up current error. Follow the equations and example below to choose the appropriate value for ROUT to minimize this initial error.

As discussed in step 4, the allowable I_{ERROR} is 5%, where $I_{ERROR} = (I_{MAX} - I_{LIMIT})/I_{MAX}$ (%). Therefore, the maximum allowable current is calculated as: $I_{MAX} = I_{LIMIT}$ (1+ I_{ERROR}) = 1.5A * (1 + 5/100) = 1.575 A.

ROUT = [1.575A * 55 mOhm * (49.9k / 5k) - 0.8] / [(0.8 / 2k) - (0.6 - 0.8) / 10k] = 153.6 Ohm.

Next, use Equation 14 below to calculate for ROUT:

 $\frac{\text{ROUT} = (I_{\text{MAX}} * R_{\text{SENSE}} * \text{Gain} - V_{\text{FB}})}{\frac{V_{\text{FB}}}{\text{RFBB}} - \frac{(V_{\text{O}_{\text{REG}} - \text{MIN}} - V_{\text{FB}})}{\text{RFBT}}}$

(11)

(12)

Typical Applications (continued)

Populate ROUT with a resistor that is as close as possible to 153.6 Ohm (this application uses 160 Ohm). If the limited sense current has a gain error and is not 1.5A at any point in time, then adjust this ROUT value to obtain the desired limit current.

We recommend that the value for ROUT is at least 50 Ohm.

Step 7: Adjusting Components

Capture the output current and output voltage plots and adjust the components as necessary. The most common components to adjust are C_G to decrease the current ripple and ROUT to get a low current error. An example output current and voltage plot can be seen in Figure 29.

8.2.1.3 Application Curve

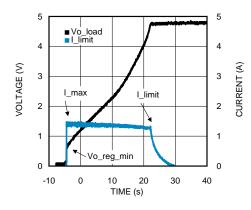
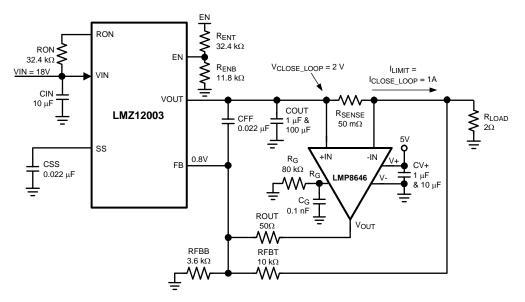



Figure 29. SuperCap Application With LM3102 Regulator Plot

8.2.2 Application #2: Current Limiter With a Resistive Load

Typical Applications (continued)

8.2.2.1 Design Requirements

This subsection describes the design process for a resistive load application with the LMZ12003 voltage regulator as seen in Figure 30. To see the current limiting capability of the LMP8646, the open-loop current must be greater than the close-loop current. An open-loop occurs when the LMP8646 output is not connected the LMZ12003's feedback pin. For this example, we will let the open-loop current to be 1.5A and the close-loop current, I_{LIMIT} , to be 1A.

8.2.2.2 Detailed Design Procedure

Step 1: Choose the components for the Regulator.

Refer to the LMZ12003 application note (AN-2031) to select the appropriate components for the LMZ12003.

Step 2: Choose the sense resistor, R_{SENSE}

R_{SENSE} sets the voltage V_{SENSE} between +IN and -IN and has the following equation:

 $R_{SENSE} = V_{OUT} / [(I_{LIMIT}) * (R_G / 5kOhm)]$

(15)

(16)

In general, R_{SENSE} depends on the output voltage, limit current, and gain. Refer to section *Selection of the Sense Resistor,* R_{SENSE} to choose the appropriate R_{SENSE} value; this example uses 50 mOhm.

Step 3: Choose the gain resistor, R_G, for LMP8646

 R_G is chosen from I_{LIMIT} . As stated, $V_{OUT} = (R_{SENSE} * I_{LIMIT}) * (R_G / 5kOhm)$. Since $V_{OUT} = V_{FB} = 0.8V$, $I_{LIMIT} = 1A$, and $R_{SENSE} = 50$ mOhm , R_G can be calculated as:

$$R_{G} = (V_{OUT} * 5 \text{ kOhm}) / (R_{SENSE} * I_{LIMIT})$$

 $R_{G} = (0.8 * 5 \text{ kOhm}) / (50 \text{ mOhm}^* 1\text{A}) = 80 \text{ kOhm}$ (17)

Step 4: Choose the Bandwidth Capacitance, C_G.

The product of C_G and R_G determines the bandwidth for the LMP8646. Refer to the Typical Performance Characteristics plots to see the range for the LMP8646 bandwidth and gain. Since each application is very unique, the LMP8646 bandwidth capacitance, C_G , needs to be adjusted to fit the appropriate application.

Bench data has been collected for this resistive load application with the LMZ12003 regulator, and we found that this application works best for a bandwidth of 2 kHz to 30 kHz. Operating anything less than this recommended bandwidth might prevent the LMP8646 from quickly limiting the current. We recommend choosing a bandwidth that is in the middle of this range and using the equation: $C_G = 1/(2^*pi^*R_G^*Bandwidth)$ to find C_G (this example uses a C_G value of 0.1nF). After this selection, capture the load current plot and adjust C_G until a desired output current plot is obtained.

Step 5: Choose the output resistor, ROUT, for the LMP8646

ROUT plays a very small role in the overall system performance for the resistive load application. ROUT was important in the supercap application because it affects the initial current error. Because current is directly proportional to voltage for a resistive load, the output current is not large at start-up. The bigger the ROUT, the longer it takes for the output voltage to reach its final value. We recommend that the value for ROUT is at least 50 Ohm, which is the chosen value for this example.

Step 6: Adjusting Components

Capture the output current and output voltage plots and adjust the components as necessary. The most common component to adjust is C_G for the bandwidth. An example of the output current and voltage plot can be seen in Figure 31.

Typical Applications (continued)

8.2.2.3 Application Curve

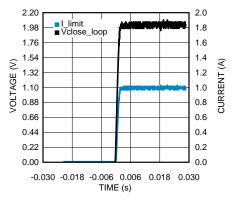


Figure 31. Plot for the Resistive Load Application With LMZ12003 Regulator Plot

8.2.3 Application #3: Current Limiter With a Low-Dropout Regulator and Resistive Load

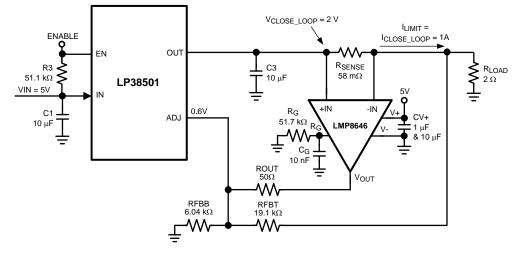


Figure 32. Resistive Load Application With LP38501 Regulator

8.2.3.1 Design Requirements

This next example is the same as the last example, except that the regulator is now a low-dropout regulator, the LP38501, as seen in Figure 32. For this example, we will let the open-loop current to be 1.25A and the close-loop current, I_{LIMIT} , to be 1A.

8.2.3.2 Detailed Design Procedure

Step 1: Choose the components for the Regulator.

Refer to the LP38501 application note (AN-1830) to select the appropriate components for the LP38501.

Step 2: Choose the sense resistor, R_{SENSE}

R_{SENSE} sets the voltage V_{SENSE} between +IN and -IN and has the following equation:

 $R_{SENSE} = V_{OUT} / [(I_{LIMIT}) * (R_G / 5kOhm)]$

(18)

In general, R_{SENSE} depends on the output voltage, limit current, and gain. Refer to section *Selection of the Sense Resistor, R_{SENSE}* to choose the appropriate R_{SENSE} value; this example uses 58 mOhm.

Step 3: Choose the gain resistor, R_G, for LMP8646

Typical Applications (continued)

 R_G is chosen from I_{LIMIT} . As stated, $V_{\text{OUT}} = (R_{\text{SENSE}} * I_{\text{LIMIT}}) * (R_G / 5kOhm)$. Since $V_{\text{OUT}} = ADJ = 0.6V$, $I_{\text{LIMIT}} = 1A$, and $R_{\text{SENSE}} = 58 \text{ mOhm}$, R_G can be calculated as:

$$R_{G} = (V_{OUT} * 5 \text{ kOhm}) / (R_{SENSE} * I_{LIMIT})$$

 $R_{G} = (0.6 * 5 \text{ kOhm}) / (58 \text{ mOhm}^* 1\text{A}) = 51.7 \text{ kOhm}$

Step 4: Choose the Bandwidth Capacitance, C_G.

The product of C_G and R_G determines the bandwidth for the LMP8646. Refer to the Typical Performance Characteristics plots to see the range for the LMP8646 bandwidth and gain. Since each application is very unique, the LMP8646 bandwidth capacitance, C_G , needs to be adjusted to fit the appropriate application.

Bench data has been collected for this resistive load application with the LP38501 regulator, and we found that this application works best for a bandwidth of 50 Hz to 300 Hz. Operating anything larger than this recommended bandwidth might prevent the LMP8646 from quickly limiting the current. We recommend choosing a bandwidth that is in the middle of this range and using the equation: $C_G = 1/(2^*pi^*R_G^*Bandwidth)$ to find C_G (this example uses a C_G value of 10 nF). After this selection, capture the plot for I_{SENSE} and adjust C_G until a desired sense current plot is obtained.

Step 5: Choose the output resistor, ROUT, for the LMP8646

ROUT plays a very small role in the overall system performance for the resistive load application. ROUT was important in the supercap application because it affects the initial current error. Because current is directly proportional to voltage for a resistive load, the output current is not large at start-up. The bigger the ROUT, the longer it takes for the output voltage to reach its final value. We recommend that the value for ROUT is at least 50 Ohm, which is the value we used for this example.

Step 6: Adjusting Components

Capture the output current and output voltage plots and adjust the components as necessary. The most common component to adjust is C_G for the bandwidth. An example plot of the output current and voltage can be seen in Figure 33.

8.2.3.3 Application Curve

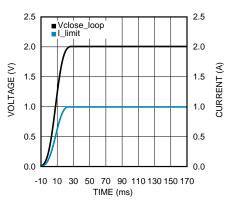


Figure 33. Plot for the Resistive Load Application With the LP38501 LDO Regulator

(19) (20)

(-

9 Power Supply Recommendations

Source V+ with an external voltage as recommended in the electrical characteristics table. It is recommended to place a 100nF ceramic bypass capacitor to ground as close to possible to the V+ pin. In addition, an electrolytic or tantalum capacitor of 10μ F is recommended. The bulk capacitor does not need to be in close vicinity with the LMP8646 and could be close to the voltage source terminals or at the output of the voltage regulator powering the LMP8646.

10 Layout

10.1 Layout Guidelines

- In a 4-layer board design, the recommended layer stack order from top to bottom is: signal, power, ground, and signal
- Bypass capacitors should be placed in close proximity to the V+ pin
- The trace for pins +IN and -IN should be big enough to handle the current running through it.

10.2 Layout Example

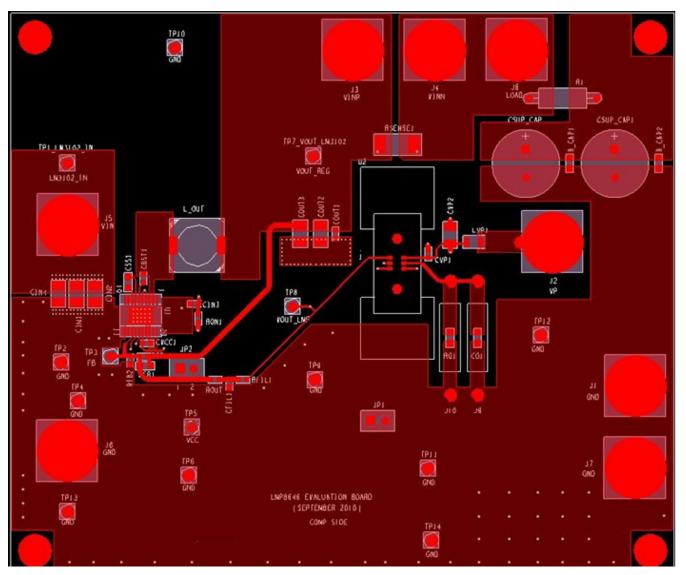


Figure 34. LMP8646 Evaluation Board Layout

11 器件和文档支持

11.1 商标

All trademarks are the property of their respective owners.

11.2 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2015, 徳州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LMP8646MK/NOPB	ACTIVE	SOT-23-THIN	DDC	6	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AK7A	Samples
LMP8646MKE/NOPB	ACTIVE	SOT-23-THIN	DDC	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AK7A	Samples
LMP8646MKX/NOPB	ACTIVE	SOT-23-THIN	DDC	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AK7A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

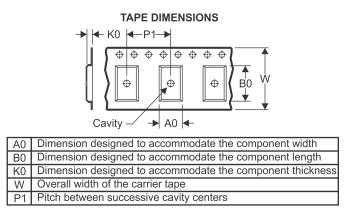
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

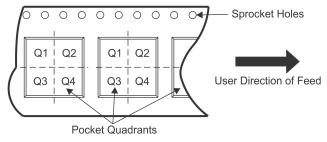
PACKAGE OPTION ADDENDUM

10-Dec-2020

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

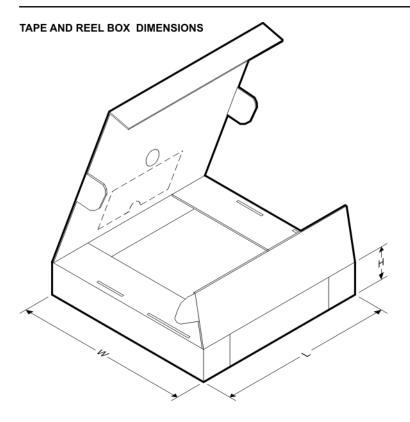

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMP8646MK/NOPB	SOT- 23-THIN	DDC	6	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMP8646MKE/NOPB	SOT- 23-THIN	DDC	6	250	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMP8646MKX/NOPB	SOT- 23-THIN	DDC	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

TEXAS INSTRUMENTS

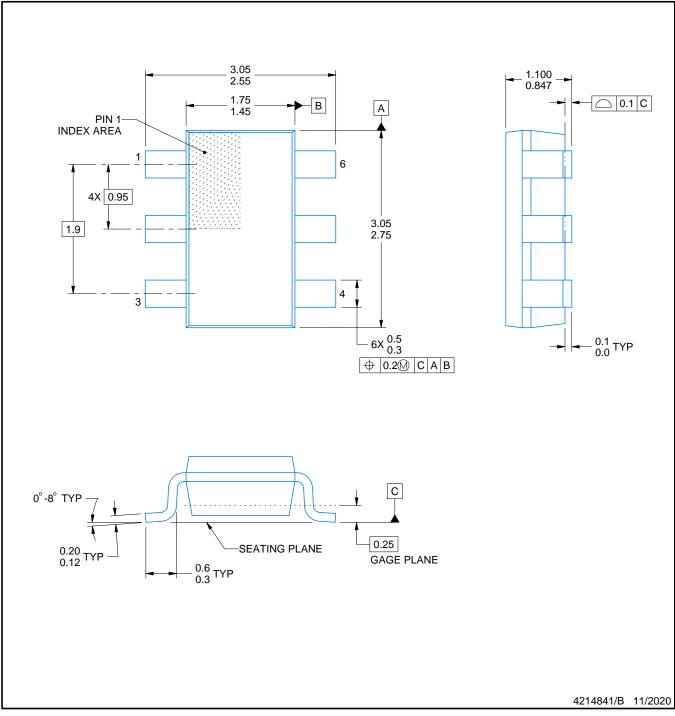
www.ti.com

PACKAGE MATERIALS INFORMATION

14-Aug-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMP8646MK/NOPB	SOT-23-THIN	DDC	6	1000	210.0	185.0	35.0
LMP8646MKE/NOPB	SOT-23-THIN	DDC	6	250	210.0	185.0	35.0
LMP8646MKX/NOPB	SOT-23-THIN	DDC	6	3000	210.0	185.0	35.0


DDC0006A

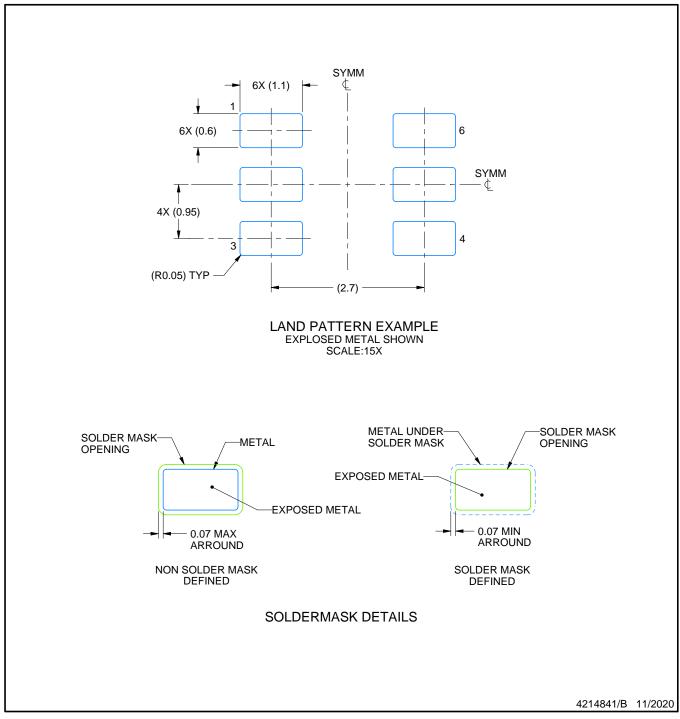
PACKAGE OUTLINE

SOT - 1.1 max height

SOT

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-193.



DDC0006A

EXAMPLE BOARD LAYOUT

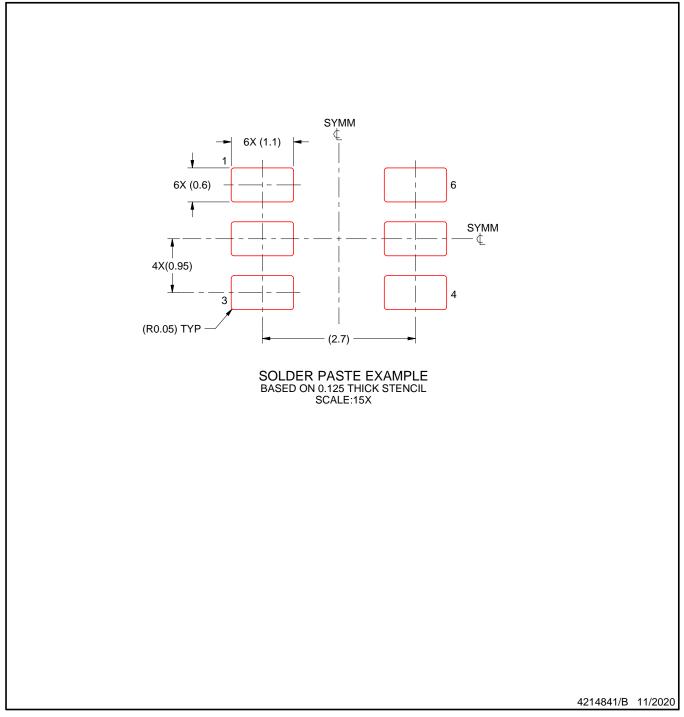
SOT - 1.1 max height

SOT

NOTES: (continued)

4. Publication IPC-7351 may have alternate designs.

5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DDC0006A

EXAMPLE STENCIL DESIGN

SOT - 1.1 max height

SOT

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 7. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司