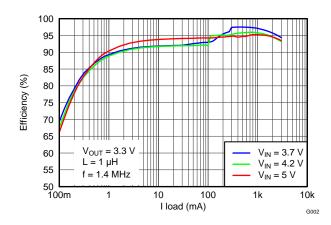


具有 DCS-Control™ 的 3A 高效同步降压转换器

查询样品: TPS62090-Q1

特性

- 符合汽车应用要求
- 具有符合 AEC-Q100 的下列结果:
 - 器件温度 1 级: -40°C 至 125°C 的结温运行温度范围
 - 器件人体模型 (HBM) 静电放电 (ESD) 分类等级 H2
 - 器件充电器件模型 (CDM) ESD 分类等级 C6
- 2.5 至 6V 输入电压范围
- DCS-Control™
- 转换器效率 95%
- 省电模式
- 20µA 运行静态电流
- 针对最低压降的 100% 占空比
- 2.8MHz 和 1.4MHz 典型开关频率
- **0.8V** 至 **V**輸入的可调输出电压
- 固定输出电压版本
- 输出放电功能
- 可调节软启动
- 两级短路保护
- 输出电压跟踪
- 宽输出电容值选择
- 采用 3mm x 3mm 16 引脚四方扁平无引线 (QFN) 封装


应用范围

- 分布式电源
- 笔记本、上网本
- 硬盘驱动器
- 处理器电源
- 电池供电型应用

说明

TPS6209X-Q1 器件是一款高频同步降压转换器,此转换器针对小解决方案尺寸、高效应用进行了优化并适合于电池供电类应用。 为了最大限度地提升效率,此转换器运行在 2.8MHz/1.4MHz 的标称开关频率的脉宽调制 (PWM) 模式下并在轻负载时自动进入省电运行模式。 当被用于分布式电源和负载点调制时,此器件允许到其它电源轨的电压跟踪并可耐受范围在 10μF 到高达 150μF 甚至更高的输出电容。 通过使用 DCS-Control 控制技术,此器件可实现出色的负载静态性能以及精确的输出电压调节。

此输出电压启动斜波由软启动引脚控制,从而使器件可作为独立电源运行或运行在跟踪配置下。 通过配置使能和电源正常引脚也有可能实现电源排序。 在省电模式下,此器件运行在典型值为 20µA 静态电流下。 在全部负载电流范围内,自动进入省电模式并且无缝保持高效。

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DCS-Control is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VAI	LUE	UNIT
		MIN	MAX	UNII
Valtaga ranga	PVIN, AVIN, FB, SS, EN, FREQ, VOS ⁽²⁾	-0.3	7	V
Voltage range	SW, PG	-0.3	V _{IN} + 0.3	V
Power Good sink current	PG		1	mA
ESD rating	Human Body Model (HBM)		2500	V
ESD rating	Charged Device Model (CDM)		1500	V
Continuous total power dissipa	Continuous total power dissipation		See the Thermal Table	
Operating junction temperature range, T _J –40 150				°C
Storage temperature range, T _s	tg	−65 150 °C		

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	TPS62090-Q1	LINUTO
	THERMAL METRIC"	QFN (16 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	45.6	
θ_{JCtop}	Junction-to-case (top) thermal resistance	58.9	
θ_{JB}	Junction-to-board thermal resistance	19	20044
Ψ_{JT}	Junction-to-top characterization parameter	1.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	19	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	4.0	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS(1)

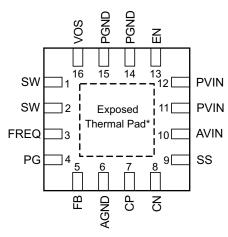
		MIN	TYP MAX	UNIT
V_{IN}	Input voltage range	2.5	6	V
T_J	Operating junction temperature	-40	125	°C

⁽¹⁾ See the APPLICATION INFORMATION for further information

⁽²⁾ All voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS

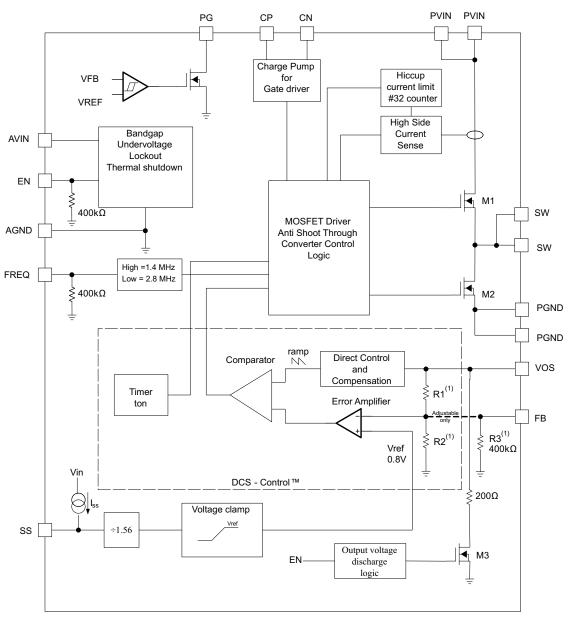
-40°C to 125°C, typical values are at T_v = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	Υ					
V _{IN}	Input voltage range		2.5		6	V
I _{QIN}	Quiescent current	Not switching, FB = FB +5 %, Into PVIN and AVIN		20		μΑ
I _{sd}	Shutdown current	Into PVIN and AVIN		0.6	5	μΑ
	Undervoltage lockout threshold	V _{IN} falling	2.1	2.2	2.3	V
UVLO	Undervoltage lockout hysteresis			200		mV
	Thermal shutdown	Temperature rising		150		٥С
	Thermal shutdown hysteresis			20		٥С
Control	SIGNALS EN, FREQ	1				
V _H	High level input voltage	V _{IN} = 2.5 to 6 V	1			V
V _L	Low level input voltage	V _{IN} = 2.5 to 6 V			0.4	V
I _{lkg}	Input leakage current	EN, FREQ = GND or V _{IN}		10	100	nA
R _{PD}	Pull down resistance			400		kΩ
Softsta	rt	1	1			
I _{SS}	Softstart current		6.3	7.5	8.7	μA
	R GOOD					
		Output voltage rising		95%		
V_{th}	Power good threshold	Output voltage falling		90%		
V _L	Low level voltage	I _(sink) = 1 mA			0.4	V
I _{PG}	PG sinking current	(SITIN)			1	mA
I _{lkq}	Leakage current	V _{PG} = 3.6 V		10	200	nA
	R SWITCH	176 0.0 1				
	High side FET on-resistance	I _{SW} = 500 mA		50		mΩ
R _{DS(on)}	Low side FET on-resistance	I _{SW} = 500 mA		40		mΩ
	High side FET switch current	SW SSS				
I _{LIM}	limit		3.7	4.6	5.5	Α
,	Out that is not for any or an	FREQ = GND, I _{OUT} = 3 A		2.8		MHz
f _s	Switching frequency	FREQ = VIN, I _{OUT} = 3 A		1.4		MHz
OUTPU	Т					
V _s	Output voltage range		0.8		V_{IN}	V
R _{od}	Output discharge resistor	EN = GND, V _{OUT} = 1.8 V		200		Ω
V _{FB}	Feedback regulation voltage			0.8		V
		V _{IN} ≥ V _{OUT} + 1 V, TPS6209X-Q1 adjustable output version				
		I _{OUT} = 1 A, PWM mode	-1.4%		+1.4%	
V_{FB}	Feedback voltage accuracy ⁽¹⁾⁽²⁾⁽³⁾	$I_{OUT} = 0$ mA, FREQ = 2.8 MHz, $V_{OUT} \ge 0.8$ V, PFM mode	-1.4%		+3%	
	accuracy	I _{OUT} = 0 mA, FREQ = 1.4 MHz, V _{OUT} ≥ 1.2 V, PFM mode	-1.4%		+3%	
		I _{OUT} = 0 mA, FREQ = 1.4 MHz, V _{OUT} < 1.2V, PFM mode	-1.4%		+3.7%	
I _{FB}	Feedback input bias current	$V_{FB} = 0.8V$, TPS6209X-Q1 adjustable output version		10	100	nA
	1	V _{IN} ≥ V _{OUT} + 1 V, Fixed output voltage				
V _{OUT}	Output voltage accuracy ⁽²⁾⁽³⁾	I _{OUT} = 1 A, PWM mode	-1.4%		+1.4%	
001		OUT = 0 mA, FREQ = High and Low, PFM mode	-1.4%		+2.5%	
	Line regulation	V _{OUT} = 1.8 V, PWM operation	,5	0.016	/3	%/V
	Load regulation	V _{OUT} = 1.8 V, PWM operation		0.04		%/A

For output voltages < 1.2 V, use a 2 x 22 μF output capacitance to achieve +3% output voltage accuracy.
 Conditions: f = 2.8 MHz, L = 0.47 μH, C_{OUT} = 22 μF or f = 1.4 MHz, L = 1 μH, C_{OUT} = 22 μF.
 For more information, see the Power Save Mode Operation section of this data sheet.

DEVICE INFORMATION

16 PIN 3 mm × 3 mm QFN TOP VIEW


NOTE: *The exposed Thermal Pad is connected to AGND.

PIN FUNCTIONS

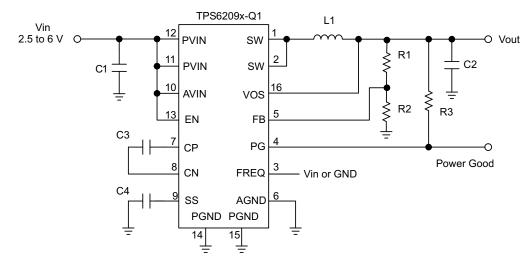
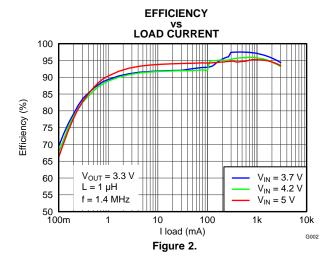
P	IN	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
SW	1, 2	- 1	Switch pin of the power stage.
FREQ	3	1	This pin selects the switching frequency of the device. FREQ=low sets the typical switching frequency to 2.8 MHz. FREQ = high sets the typical switching frequency to 1.4 MHz. This pin has an active pulldown resistor of typically 400 k Ω and can be left floating for 2.8 MHz operation.
PG	4	0	Power good open drain output. This pin is high impedance if the output voltage is within regulation. This pin is pulled low if the output is below its nominal value. The pullup resistor can not be connected to any voltage higher than the input voltage of the device.
FB	5		Feedback pin of the device. For the fixed output voltage versions this pin must be connected to GND for improved thermal performance. If desired leave this pin floating because it is internally connected with 400 k Ω to GND for fixed output voltage versions.
AGND	6		Analog ground.
CP	7		Internal charge-pump flying capacitor. Connect a 10-nF capacitor between CP and CN.
CN	8		Internal charge-pump flying capacitor. Connect a 10-nF capacitor between CP and CN.
SS	9	I	Softstart control pin. A capacitor is connected to this pin and sets the softstart time. Leaving this pin floating sets the minimum start-up time.
AVIN	10		Bias-supply input-voltage pin.
PVIN	11,12		Power-supply input-voltage pin.
EN	13		Device enable. To enable the device this pin must be pulled high. Pulling this pin low disables the device. This pin has an active pulldown resistor of typically 400 k Ω .
PGND	14,15		Power ground connection.
VOS	16		Output-voltage sense pin. This pin must be connected to the output voltage.
Thermal P	ad		The exposed thermal pad is connected to AGND.

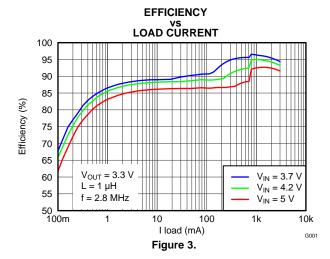
FUNCTIONAL BLOCK DIAGRAM

(1) R1, R2, R3 are implemented in the fixed output voltage version only.

Table 1. List of components

REFERENCE	DESCRIPTION	MANUFACTURER
TPS6209X-Q1	High efficient step down converter	Texas Instruments
L1	Inductor: 1 μH, 0.47 μH, 0.4 μH	Coilcraft XFL4020-102, XAL4020-401, TOKO DEF252012-R47
C1	Ceramic capacitor: 10 μF, 22 μF	(6.3-V, X5R, 0603), (6.3-V, X5R, 0805)
C2	Ceramic capacitor: 22 µF	(6.3-V, X5R, 0805)
C3, C4	Ceramic capacitor	Standard
R1, R2, R3	Resistor	Standard


Figure 1. Parametric Measurement Circuit

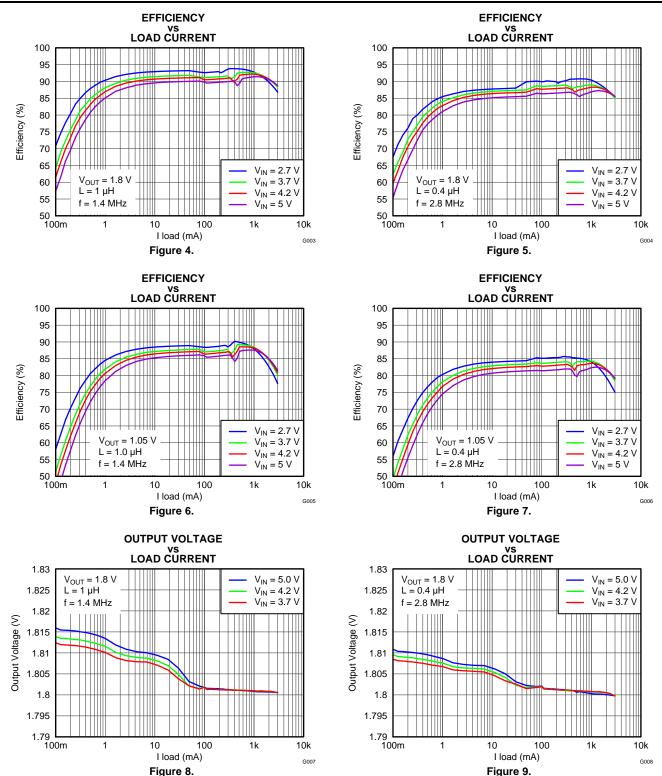
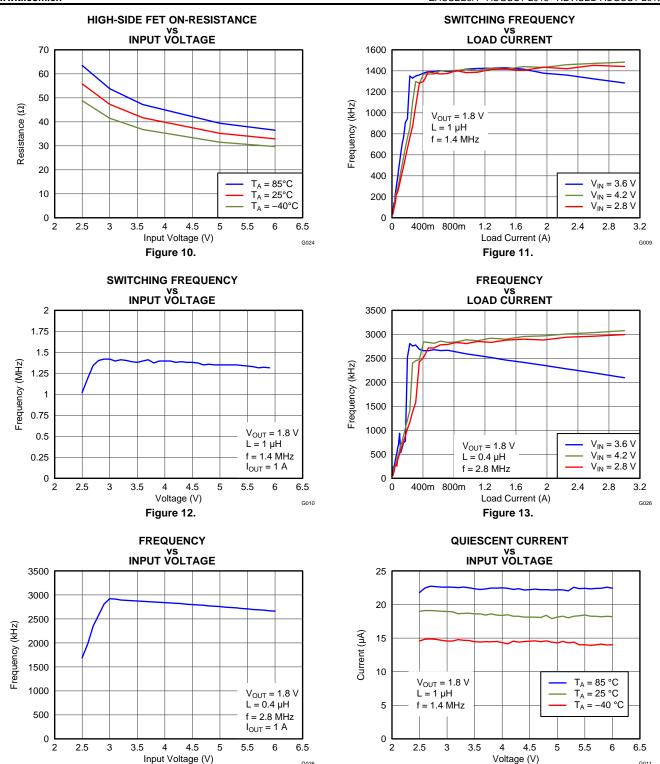

TYPICAL CHARACTERISTICS

		FIGURE
Efficiency	vs load current ($V_O = 3.3 \text{ V}$, $f = 1.4 \text{ MHz}$, $f = 2.8 \text{ MHz}$)	Figure 2, Figure 3
Efficiency	vs load current ($V_O = 1.8 \text{ V}$, $f = 1.4 \text{ MHz}$, $f = 2.8 \text{ MHz}$)	Figure 4, Figure 5
Efficiency	vs load current (V _O = 1.05 V, f = 1.4 MHz, f = 2.8 MHz)	Figure 6, Figure 7
Output voltage	vs load current ($V_O = 1.8 \text{ V}$, $f = 1.4 \text{ MHz}$, $f = 2.8 \text{ MHz}$)	Figure 8, Figure 9
High Side FET on-resistance	vs input voltage	Figure 10
Switching frequency	vs load current (V _O = 1.8 V, f = 1.4 MHz)	Figure 11
Switching frequency	vs input voltage (V _O = 1.8 V, f = 1.4 MHz)	Figure 12
Switching frequency	vs load current (V _O = 1. 8 V, f = 2.8 MHz)	Figure 13
Switching frequency	vs input voltage (V _O = 1.8 V, f = 2.8 MHz)	Figure 14
Quiescent current	vs input voltage ($V_0 = 1.8 \text{ V}, f = 1.4 \text{ MHz}$)	Figure 15
PWM operation	V _O = 1.8 V, f = 1.4 MHz	Figure 16
PFM operation	V _O = 1.8 V, f = 1.4 MHz	Figure 17
PFM operation	V _O = 1.8 V, f = 2.8 MHz	Figure 18
Load sweep	V _O = 1.8 V, f = 1.4 MHz	Figure 19
Load sweep	V _O = 1.8 V, f = 2.8 MHz	Figure 20
Start-up	V _O = 1.8 V, f = 2.8 MHz, C _{SS} = 10 nF	Figure 21
Shutdown	V _O = 1.8 V, f = 2.8 MHz	Figure 22
Hiccup short circuit protection	V _O = 1.8 V, f = 1.4 MHz	Figure 23
Hiccup Short circuit protection	V _O = 1.8 V, f = 1.4 MHz, recovery after short circuit	Figure 24
Load transient response	V _O = 1.8 V, f = 1.4 MHz, 300 mA to 2.5 A	Figure 25
Load transient response	V _O = 1.8 V, f = 1.4 MHz, 300 mA to 2.5 A	Figure 26
Load transient response	V _O = 1.8 V, f = 1.4 MHz, 20 mA to 1 A	Figure 27



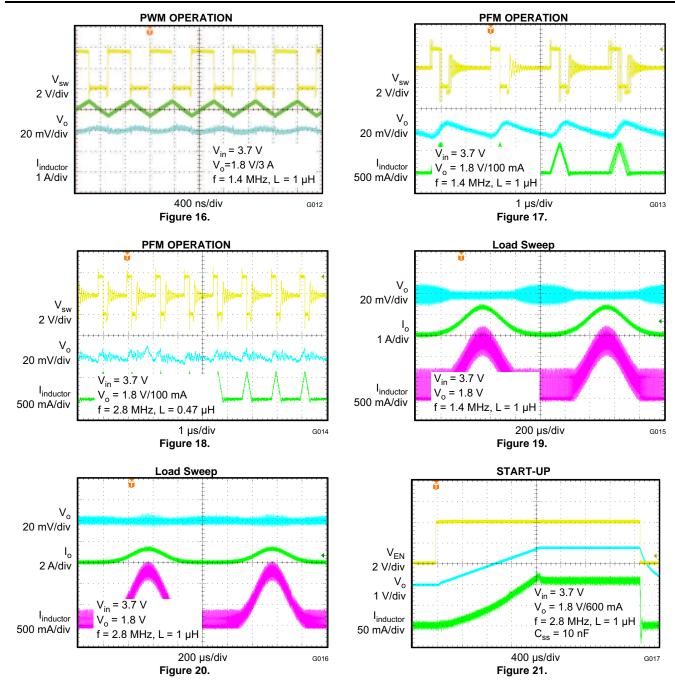

G026

Figure 14.

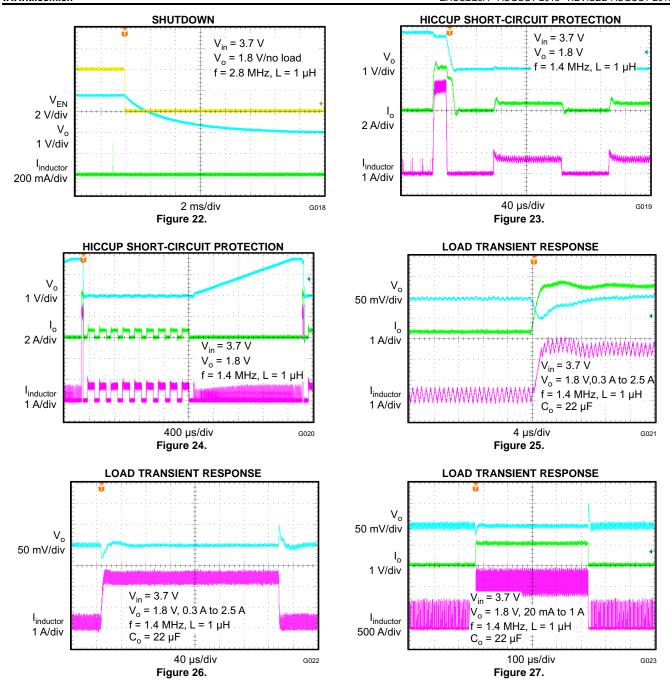

G011

Figure 15.

DETAILED DESCRIPTION

Operation

The TPS6209X-Q1 synchronous switched mode converters are based on DCS-Control (Direct Control with Seamless transition into Power Save Mode). DCS-Control is an advanced regulation topology that combines the advantages of hysteretic and voltage mode control.

The DCS-Control topology operates in Pulse Width Modulation (PWM) mode for medium to heavy load conditions and in Power Save Mode at light load currents. In PWM, the converter operates with nominal switching frequency of 2.8 MHz or 1.4 MHz, having a controlled frequency variation over the input voltage range. As the load current decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC quiescent current to achieve high efficiency over the entire load current range. DCS-Control supports both operation modes (PWM and PFM) using a single building block with a seamless transition from PWM to Power Save Mode without effecting the output voltage. Fixed-output voltage versions provide the smallest solution size combined with lowest quiescent current. The TPS6209X-Q1 family offers excellent DC-voltage regulation and load transient regulation, combined with low output voltage ripple, to minimize interference with RF circuits.

PWM Operation

At medium to heavy load currents, the device operates with PWM at a nominal switching frequency of 2.8 MHz or 1.4 MHz depending on the setting of the FREQ pin. As the load current decreases, the converter enters the Power Save Mode operation reducing the switching frequency. The device enters Power Save Mode at the boundary to discontinuous conduction mode (DCM).

Power Save Mode Operation

As the load current decreases, the converter enters Power Save Mode operation. During Power Save Mode the converter operates with reduced switching frequency in PFM mode and with a minimum quiescent current while maintaining high efficiency. The Power Save Mode is based on a fixed on-time architecture following Equation 1. When operating at 1.4 MHz, the on-time is twice as long as the on-time for 2.8 MHz operation, resulting in larger output voltage ripple, as shown in Figure 17 and Figure 18, and slightly higher output voltage at no load, as shown in Figure 9. To have the same output voltage ripple at 1.4 MHz during PFM mode, either the output capacitor or the inductor value must be increased. As an example, operating at 2.8 MHz using 0.47-µH inductor gives the same output voltage ripple as operating with 1.4 MHz using 1-µH inductor.

$$ton_{2.8MHz} = \frac{V_{OUT}}{V_{IN}} \times 360 \text{ns}$$

$$ton_{1.4MHz} = \frac{V_{OUT}}{V_{IN}} \times 360 \text{ns} \times 2$$

$$f = \frac{2 \times I_{OUT}}{ton^2 \left(1 + \frac{V_{IN} - V_{OUT}}{V_{OUT}}\right) \times \frac{V_{IN} - V_{OUT}}{L}}$$
(1)

In Power Save Mode the output voltage rises slightly above the nominal output voltage in PWM mode, as shown in Figure 8 and Figure 9. This effect is reduced by increasing the output capacitance or the inductor value. This effect is also reduced by programming the output voltage of the TPS6209X-Q1 lower than the target value. As an example, if the target output voltage is 3.3 V, then the TPS6209X-Q1 is programmed to 3.3 V - 0.8%. As a result the output voltage accuracy is now -2.2% to +2.2% instead of -1.4% to 3%. The output voltage accuracy in PFM operation is reflected in the ELECTRICAL CHARACTERISTICS table and given for a $22-\mu\text{F}$ output capacitance.

(2)

Low Dropout Operation (100% Duty Cycle)

The device offers low input to output voltage difference by entering 100% duty cycle mode. In this mode the high-side MOSFET switch is constantly turned on which is particularly useful in battery powered applications to achieve longest operation time by taking full advantage of the whole battery voltage range. The minimum input voltage where the output voltage falls below the nominal regulation value is given by Equation 2.

$$V_{IN(min)} = V_{OUT(max)} + I_{OUT} x (R_{DS(on)} + R_L)$$

Where

- R_{DS(on)} = High side FET on-resistance
- R_L = DC resistance of the inductor
- V_{OUT(max)} = nominal output voltage plus maximum output-voltage tolerance

Softstart (SS)

To minimize inrush current during start-up, the device has an adjustable softstart depending on the capacitor value connected to the SS pin. The device charges the softstart capacitor with a constant current of typically 7.5 µA. The feedback voltage follows this voltage with a fraction of 1.56 until the internal reference voltage of 0.8 V is reached. The softstart operation is complete when the voltage at the softstart capacitor has reached typically 1.25 V. The soft-start time is calculated using Equation 3. The larger the softstart capacitor, the longer the softstart time. The relation between softstart voltage and feedback voltage is estimated using Equation 4.

$$t_{SS} = C_{SS} \times \frac{1.25V}{7.5\mu A}$$
 (3)

$$V_{FB} = \frac{V_{SS}}{1.56} \tag{4}$$

Equation 4 is also the case for the fixed output voltage option having the internal regulation voltage. Leaving the softstart pin floating sets the minimum start-up time.

Start-up Tracking (SS)

The softstart pin also implements output voltage tracking with other supply rails. The internal reference voltage follows the voltage at the softstart pin with a fraction of 1.56 until the internal reference voltage of 0.8 V is reached. The softstart pin implements output voltage tracking as shown in Figure 28.

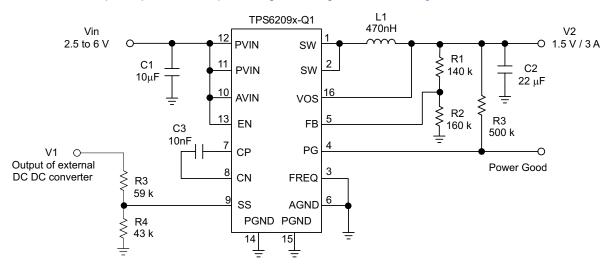


Figure 28. Output Voltage Tracking

In Figure 28, the output V2 tracks the voltage applied to V1. The voltage tracks simultaneously when the conditions in Equation 5 are met.

$$\frac{R3}{R4} = \frac{R1}{R2} \times 1.56 \tag{5}$$

As the fraction of R3/R4 becomes larger the voltage V1 ramps up faster than V2 and if the fraction becomes smaller then the ramp is slower than V2. R4 must be determined first using Equation 6.

$$R4 = \frac{1.25V}{300\mu A}$$
 (6)

In the calculation of R4, 300-μA current is used to achieve sufficient accuracy by taking into account the typical 7.5-μA soft-start current. After determining R4, R3 is calculated using Equation 5.

Short Circuit Protection (Hiccup-Mode)

The device is protected against hard short circuits to GND and overcurrent events. This protection is implemented by a two-level short-circuit protection. During start-up and when the output is shorted to GND the switch current limit is reduced to 1/3 of the typical current limit of 4.6 A. When the output voltage exceeds typically 0.6 V, the current limit is released to the nominal value. The full current limit is implemented as a hiccup current limit. Once the internal current limits are triggered 32 times, the device stops switching and starts a new start-up sequence after a typical delay time of $66~\mu S$ passed by. The device continues in this cycle until the high current condition is released.

Output Discharge Function

To ensure the device starts up under the defined conditions, the output discharges through the VOS pin with a typical discharge resistor of 200 Ω whenever the device shuts down. This discharge happens when the device is disabled or if thermal shutdown, undervoltage lockout or short circuit hiccup-mode is triggered.

Power Good Output (PG)

The power good output is low when the output voltage is below the nominal value. The power good becomes high impedance once the output is within 5% of regulation. The PG pin is an open drain output and is specified to typically sink up to 1 mA. This output requires a pullup resistor to be monitored properly. The pullup resistor cannot be connected to any voltage higher than the input voltage of the device.

Frequency Set Pin (FREQ)

The FREQ pin is a digital logic input which sets the nominal switching frequency. Pulling this pin to GND sets the nominal switching frequency to 2.8 MHz and pulling this pin high sets the nominal switching frequency to 1.4 MHz. Because this pin changes the switching frequency it also changes the on-time during PFM mode. At 1.4 MHz the on-time is twice the on-time as operating at 2.8 MHz. This pin has an active pulldown resistor of typically 400 k Ω . For applications where efficiency is of highest importance, a lower switching frequency should be selected. A higher switching frequency allows the use of smaller external components, faster load transient response and lower output voltage ripple when using same L-C values.

Undervoltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts down the device at input voltages lower than typically 2.2 V with a 200-mV hysteresis.

Thermal Shutdown

The device enters thermal shutdown once the junction temperature exceeds typically 150°C with a 20°C hysteresis.

APPLICATION INFORMATION

DESIGN PROCEDURE

The first step in the design procedure is the selection of the output filter components. To simplify this process, Table 2 and Table 3 outline possible inductor and capacitor value combinations.

Table 2. Output Filter Selection (2.8-MHz Operation, FREQ = GND)

INDUCTOR VALUE (LI(1)		OUTPUT C	APACITOR VA	ALUE [μF] ⁽²⁾	
INDUCTOR VALUE [µH] ⁽¹⁾	10	22	47	100	150
0.47		√(3)	V	√	√
1.0	\checkmark	√	√	√	√
2.2					
3.3					

- (1) Inductor tolerance and current de-rating is anticipated. The effective inductance varies by +20% and -30%.
- (2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and -50%.
- (3) Typical application configuration. Other check marks indicate alternative filter combinations.

Table 3. Output Filter Selection (1.4-MHz Operation, FREQ = V_{IN})

INDUCTOR VALUE [µH] ⁽¹⁾		OUTPUT C	APACITOR VA	LUE [μF] ⁽²⁾	
INDUCTOR VALUE [µII].	10	22	47	100	150
0.47		√	√	√	√
1.0	√	√(3)	√	√	√
2.2	√	√	√	√	√
3.3					

- (1) Inductor tolerance and current de-rating is anticipated. The effective inductance varies by +20% and -30%.
- (2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance varies by +20% and -50%.
- (3) Typical application configuration. Other check marks indicate alternative filter combinations.

Inductor Selection

The inductor selection is affected by several parameters such as inductor-ripple current, output-voltage ripple, transition point into Power Save Mode, and efficiency. See Table 4 for typical inductors.

Table 4. Inductor Selection

INDUCTOR VALUE	COMPONENT SUPPLIER	SIZE (L × W × H mm)	Isat / DCR
0.6 μH	Coilcraft XAL4012-601	4 × 4 × 2.1	7.1 A / 9.5 mΩ
1 μH	Coilcraft XAL4020-102	4 × 4 × 2.1	5.9 A / 13.2 mΩ
1 μH	Coilcraft XFL4020-102	4 × 4 × 2.1	5.1 A / 10.8 mΩ
0.47 μΗ	TOKO DFE252012 R47	2.5 × 2 × 1.2	$3.7~\text{A}$ / $39~\text{m}\Omega$
1 μH	TOKO DFE252012 1R0	2.5 × 2 × 1.2	$3.0~\text{A}$ / $59~\text{m}\Omega$
0.68 μΗ	TOKO DFE322512 R68	3.2 × 2.5 × 1.2	3.5 A / 37 mΩ
1 µH	TOKO DFE322512 1R0	3.2 × 2.5 × 1.2	3.1 A / 45 mΩ

In addition, the inductor must be rated for the appropriate saturation current and DC resistance (DCR). The inductor must be rated for a saturation current as high as the typical switch current limit, of 4.6 A or according to Equation 7 and Equation 8 calculate the maximum inductor current under static load conditions. The formula takes the converter efficiency into account. The converter efficiency is taken from the TYPICAL CHARACTERISTICS graphs or 80% can be used as a conservative approach. The calculation must be done for the maximum input voltage where the peak switch current is highest.

$$I_{L} = I_{OUT} + \frac{\Delta I_{L}}{2} \tag{7}$$

$$I_{L} = I_{OUT} + \frac{\frac{V_{OUT}}{\eta} \times \left(1 - \frac{V_{OUT}}{V_{IN} \times \eta}\right)}{2 \times f \times L}$$

where

- f = Converter switching frequency (typical 2.8 MHz or 1.4 MHz)
- L = Selected inductor value
- η = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as an conservative assumption)

NOTE

The calculation must be done for the maximum input voltage of the application

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current. A margin of 20% must be added to cover for load transients during operation.

Input and Output Capacitor Selection

For best output and input voltage filtering, low ESR ceramic capacitors are recommended. The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device. A 22- μ F or larger input capacitor is recommended for 1.4-MHz operation frequency. For 2.8-MHz operation frequence a 10- μ F input capacitor or larger is recommended. The output capacitor value ranges from 10 μ F up to 150 μ F and beyond. The recommended typical output capacitor value is 22 μ F and varies over a wide range as outline in the output filter selection table.

Table 5. Input Capacitor Selection

INPUT CAPACITOR	COMMENT
10 μF	FREQ = low, f = 2.8 MHz
22 µF	FREQ = high, f = 1.4 MHz

Setting the Output Voltage

The output voltage is set by an external resistor divider according to Equation 9, Equation 10, and Equation 11.

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right) = 0.8 \text{ V} \times \left(1 + \frac{R1}{R2}\right)$$
 (9)

$$R2 = \frac{V_{FB}}{I_{FB}} = \frac{0.8 \text{ V}}{5 \,\mu\text{A}} \approx 160 \text{ k}\Omega \tag{10}$$

$$R1 = R2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right) = R2 \times \left(\frac{V_{OUT}}{0.8V} - 1\right)$$
(11)

When sizing R2, use a minimum of $5~\mu A$ for the feedback current, I_{FB} , in order to achieve low quiescent current and acceptable noise sensitivity. Larger currents through R2 improve noise sensitivity and output voltage accuracy. The lowest quiescent current and best output voltage accuracy are achieved with the fixed output-voltage versions. For the fixed output-voltage versions, leave the FB pin floating or connected to GND to improve the thermal package performance.

Layout Guideline

TI recommends placing all components as close as possible to the IC. The VOS connection is noise sensitive and must be routed as short and directly to the output terminal of the inductor. The exposed thermal pad of the package, analog ground (pin 6) and power ground (pin 14, 15) should have a single joint connection at the exposed thermal pad of the package, which minimizes switch node jitter. The charge-pump capacitor connected to CP and CN should be placed close to the IC to minimize coupling of switching waveforms into other traces and circuits. Refer to the evaluation module User Guide (SLVU670) for an example of component placement, routing and thermal design.

TYPICAL APPLICATIONS

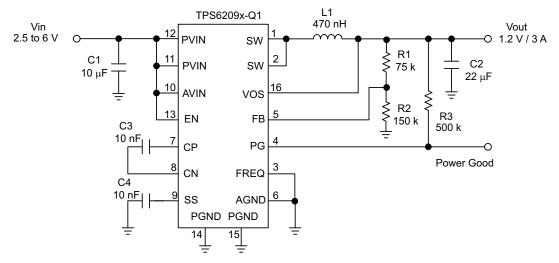


Figure 29. 1.2-V Adjustable Version Operating at 2.8 MHz

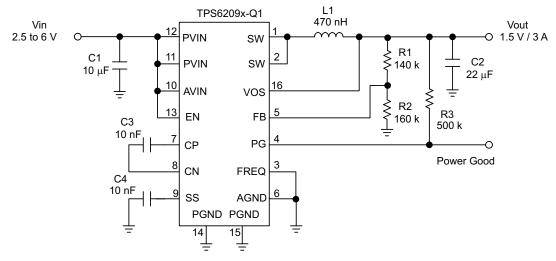


Figure 30. 1.5-V Adjustable Version Operating at 2.8 MHz

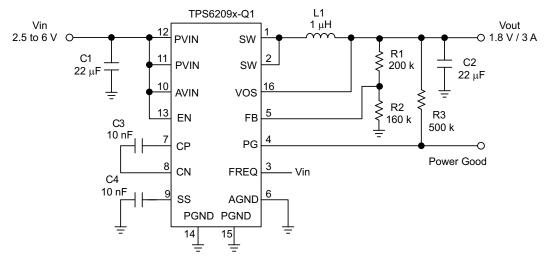


Figure 31. 1.8-V Adjustable Version Operating at 1.4 MHz

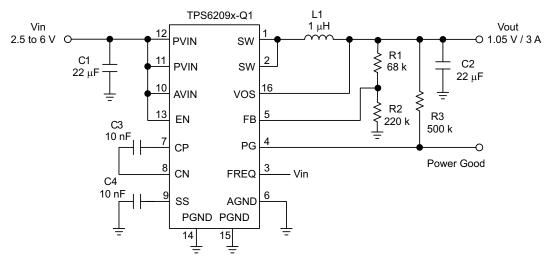


Figure 32. 1.05-V Adjustable Version Operating at 1.4 MHz

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TPS62090QRGTRQ1	ACTIVE	VQFN	RGT	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	SJG	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

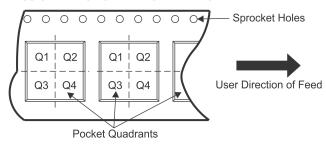
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

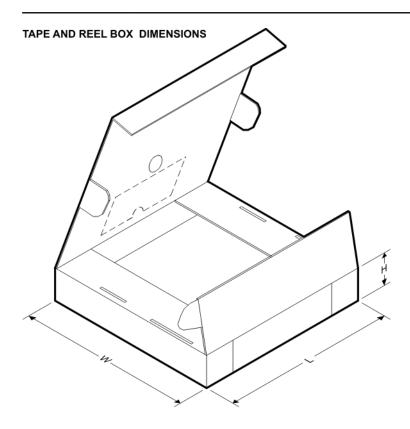
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

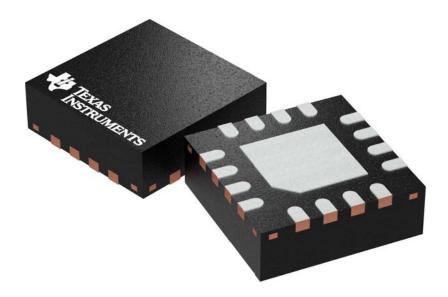
www.ti.com 11-Aug-2017


TAPE AND REEL INFORMATION

_		
		Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

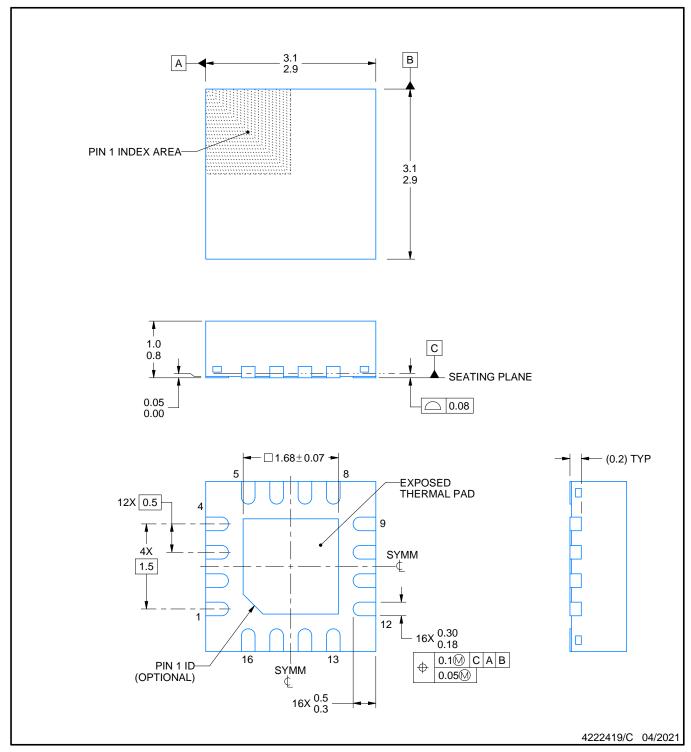
*All dimensions are nominal


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS62090QRGTRQ1	VQFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

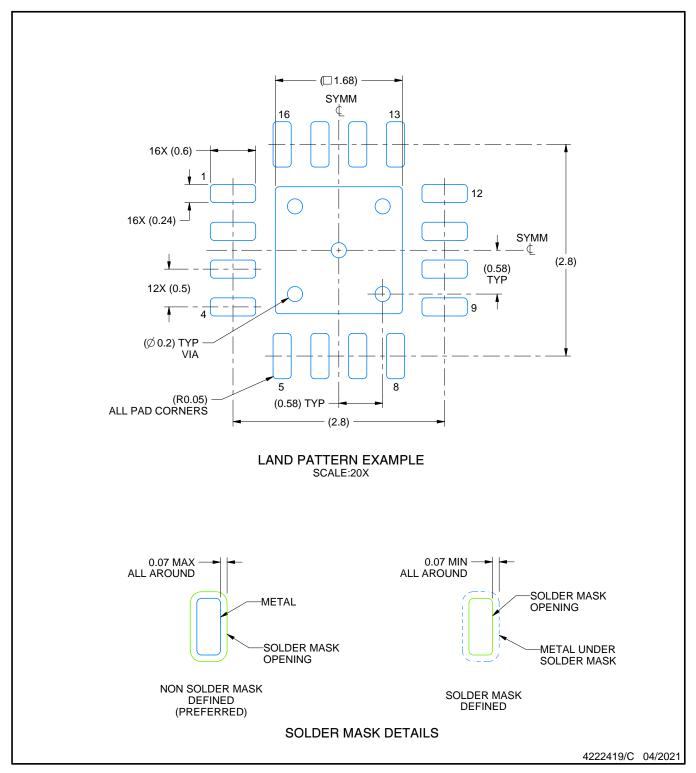
www.ti.com 11-Aug-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS62090QRGTRQ1	VQFN	RGT	16	3000	367.0	367.0	35.0	


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

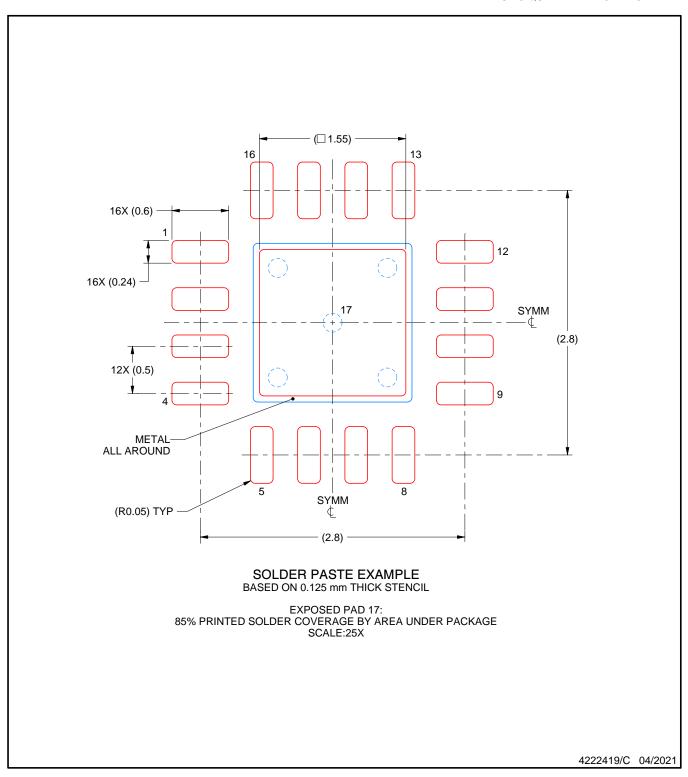
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司