

ESD321

ZHCSIK7 -JULY 2018

采用 0402 封装的低电容(小于 1pF)单通道 ESD321 30kV ESD 保护二极管

1 特性

- IEC 61000-4-2 4 级静电放电 (ESD) 保护
 - ±30kV 接触放电
 - ±30kV 气隙放电
- IEC 61000-4-4 瞬态放电 (EFT) 保护
 - 80A (5/50ns)
- IEC 61000-4-5 浪涌保护
 - 6A (8 μ s/20 μ s)
- IO 电容: 0.9pF (典型值)
- 直流击穿电压: 4.5V (最小值)
- 低泄漏电流 0.1nA(典型值)
- 极低 ESD 钳位电压
 - 在 16A TLP 下为 6.8V (I/O 至 GND)
 - R_{DYN} : 0.13 Ω (I/O 至 GND)
- 工业温度范围: -40°C 至 +125°C
- 行业标准的 0402 封装 (DFN1006P2)

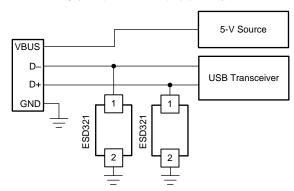
2 应用

- 终端设备
 - 可穿戴产品
 - 工业和服务机器人
 - 便携式计算机和台式机
 - 手机和平板电脑
 - 机顶盒
 - 数字视频录像机 (DVR) 和网络视频录像机 (NVR)
 - 电视和监视器
 - EPOS(电子销售终端)
- 接口
 - USB 2.0/1.1
 - 通用输入/输出 (GPIO)
 - 以太网 10/100/1000Mbps
 - 按钮
 - 音频

3 说明

ESD321 是一种单向 TVS ESD 保护二极管,具有低动态电阻和低钳位电压。ESD321 的额定 ESD 冲击消散值高达 ±30kV,符合 IEC 61000-4-2 国际标准(高于4级)。

超低动态电阻 (0.13Ω) 和极低钳位电压(16A TLP 时为 6.8V)可针对瞬态事件提供系统级保护。该器件具有 0.9pF 的低 IO 电容,适合用于保护 USB 2.0 和以太网 10/100/1000Mbps 等接口。


ESD321 采用符合行业标准的 0402 (DPY/DFN1006P2) 封装。

器件信息(1)

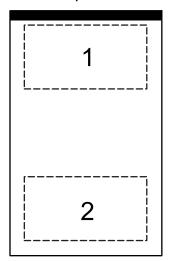
器件型号	封装	封装尺寸 (标称值)
ESD321	X1SON (2)	0.60mm x 1.00mm

(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。

典型的 USB 2.0 应用原理图

目录

1	特性 1		7.4 Device Functional Modes	8
2	应用 1	8	Application and Implementation	9
3	说明1		8.1 Application Information	9
4	修订历史记录 2		8.2 Typical Application	9
5	Pin Configuration and Functions	9	Power Supply Recommendations	11
6	Specifications4	10	Layout	11
-	6.1 Absolute Maximum Ratings		10.1 Layout Guidelines	11
	6.2 ESD Ratings -JEDEC Specifications 4		10.2 Layout Example	11
	6.3 ESD Ratings - IEC Specifications	11	器件和文档支持	12
	6.4 Recommended Operating Conditions		11.1 文档支持	
	6.5 Thermal Information		11.2 接收文档更新通知	12
	6.6 Electrical Characteristics5		11.3 社区资源	12
	6.7 Typical Characteristics		11.4 商标	12
7	Detailed Description 8		11.5 静电放电警告	12
	7.1 Overview 8		11.6 术语表	12
	7.2 Functional Block Diagram 8	12	机械、封装和可订购信息	12
	7.3 Feature Description			


4 修订历史记录

日期	修订版本	说明
2018 年 7 月	*	初始发行版。

5 Pin Configuration and Functions

Pin Functions

	PIN	I/O	DESCRIPTION		
NO.	NO. NAME		DESCRIPTION		
1	Ю	I/O	ESD Protected Channel. Connect to the line being protected.		
2 GND		GND	Connect to Ground		

ZHCSIK7 – JULY 2018 www.ti.com.cn

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Electrical Fast Transient	IEC 61000-4-4 Peak Current at 25 °C		80	Α
Curas Dulos	IEC 61000-4-5 Surge (tp 8/20 μs) Peak Power at 25 °C		40	W
Surge Pulse	IEC 61000-4-5 Surge (tp 8/20 µs) Peak Current at 25 °C		6	Α
T _A	Operating free-air temperature	-40	125	°C
T _{stg}	Storage temperature	-65	155	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings -JEDEC Specifications

			VALUE	UNIT
.,	Classica dia dia da avera	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, allpins (1)	±2500	V
V _(ESD)		Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings - IEC Specifications

			VALUE	UNIT
V	Electrostatio discharge	IEC 61000-4-2 Contact Discharge, all pins	±30000	V
V _(ESD)	Electrostatic discharge	IEC 61000-4-2 Air Discharge, all pins	±30000	V

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V_{IN}	Input voltage	0	3.6	V
T _A	Operating Free Air Temperature	-40	125	°C

6.5 Thermal Information

		ESD321	
	THERMAL METRIC ⁽¹⁾	DPY (X1SON)	UNIT
		2 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	437.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	249.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	169.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	99.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	168.6	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

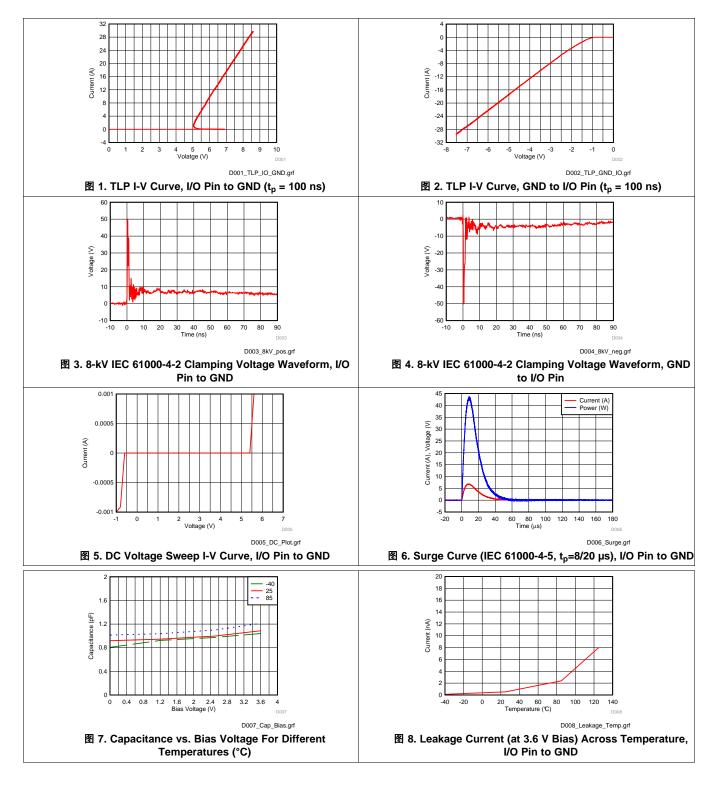
⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.6 Electrical Characteristics

At TA = 25°C unless otherwise noted

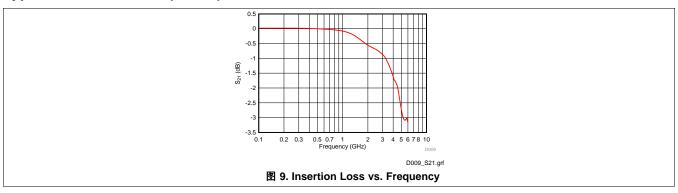
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{RWM}	Reverse stand-off voltage	I _{IO} < 50 nA, across operating temperature range			3.6	V
I _{LEAKAGE}	Leakage current at 3.6 V	$V_{IO} = 3.6 \text{ V}, \text{ I/O to GND}$		0.1	10	nA
V_{BRF}	Breakdown voltage, I/O to GND (1)	I _{IO} = 1 mA	4.5		7.5	V
V _{FWD}	Forward Voltage, GND to I/O (1)	I _{IO} = 1 mA		0.8		V
V _{HOLD}	Holding voltage, I/O to GND (2)	I _{IO} = 1 mA		5.1		V
		I _{PP} = 6 A (8/20 μs Surge), I/O to GND		6.3		V
V_{CLAMP}	Clamping voltage	I _{PP} = 16 A (100 ns TLP), I/O to GND		6.8		V
		I _{PP} = 16 A (100 ns TLP), GND to I/O		4.7		V
D	D	I/O to GND, 100 ns TLP, between 10 to 20 A I _{PP}		0.13		0
R_{DYN}	Dynamic resistance	GND to I/O , 100 ns TLP, between 10 to 20 A I _{PP}	0.2			Ω
C _{LINE}	Line capacitance, IO to GND	$V_{IO} = 0 \text{ V}, V_{p-p} = 30 \text{ mV}, f = 1 \text{ MHz}$		0.9	1.1	pF

⁽¹⁾ V_{BRF} and V_{BRR} are defined as the voltage obtained at 1 mA when sweeping the voltage up, before the device latches into the snapback state


⁽²⁾ V_{HOLD} is defined as the voltage when 1 mA is applied, after the device has successfully latched into the snapback state.

6

STRUMENTS


ZHCSIK7-JULY 2018 www.ti.com.cn

Typical Characteristics (接下页)

TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview

The ESD321 is a low capacitance uni-directional ESD Protection Diode with a low clamping voltage. This device can dissipate ESD strikes up to ±30 kV (Contact and Air) per the IEC 61000-4-2 Standard. The low clamping makes this device suitable for protecting any ESD sensitive devices.

7.2 Functional Block Diagram

7.3 Feature Description

ESD321 provides ESD protection up to ± 30 -kV contact and ± 30 -kV air gap per IEC 61000-4-2 standard. During an ESD event, ESD diode connected to the I/O pin turns on and diverts the current to ground. Additionally, ESD321 also provides protection against IEC 61000-4-5 Surge currents up to 6 A (8/20 μ s waveform) and up to 80 A per IEC 61000-4-4 (5/50 ns waveform, 4 kV with 50- Ω impedance) electrical fast transient (EFT) standard. The capacitance between the I/O pin and ground is 0.9 pF (typical) and 1.1 pF (maximum). The device features a low leakage current of 0.1 nA (typical) and 50 nA (maximum, across operating temperature range) with a bias of 3.6 V. The ESD diode at the I/O pin protects the ESD-sensitive devices by clamping the voltage to a low value of 6.8 V (I_{PP} = 16 A 100 ns TLP). The layout of this device makes it simple and easy to add protection to an existing layout. The package offers flow-through routing, requiring minimal modification to an existing layout.

7.4 Device Functional Modes

The ESD321 is a passive integrated circuit that triggers when voltages are above V_{BRF} or below V_{FWD} . During ESD events, voltages as high as ± 30 kV (contact or air) can be directed to ground via the internal diode network. When the voltages on the protected line fall below the trigger levels of ESD321 (usually within 10s of nanoseconds) the device reverts to passive.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The ESD321 is a diode type TVS which is used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. The low R_{DYN} of the triggered TVS holds this voltage, V_{CLAMP} , to a safe level for the protected IC.

8.2 Typical Application

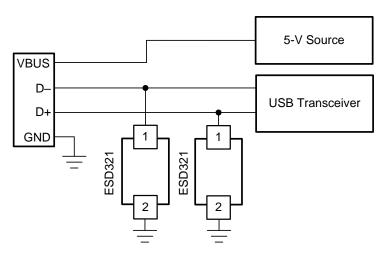


图 10. USB 2.0 ESD Schematic

8.2.1 Design Requirements

For this design example, two ESD321 devices are being used in a USB 2.0 application. This provides a complete ESD protection scheme.

Given the USB 2.0 application, the parameters listed in 表 1 are known.

表 1. Design Parameters

DESIGN PARAMETER	VALUE
Signal range on DP-DM lines	0 V to 3.6 V
Operating frequency on DP-DM lines	up to 240 MHz

8.2.2 Detailed Design Procedure

8.2.2.1 Signal Range

The ESD321 supports signal ranges between 0 V and 3.6 V, which supports the USB 2.0 signal pair on the USB 2.0 application.

8.2.2.2 Operating Frequency

The ESD321 has a 0.9 pF (typical) capacitance, which supports the USB 2.0 data rates of 480 Mbps.

TEXAS INSTRUMENTS

8.2.3 Application Curve

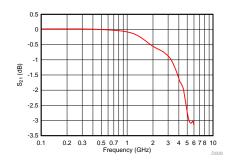


图 11. Insertion Loss Vs. Frequency

9 Power Supply Recommendations

The ESD321 is a passive ESD device so there is no need to power it. Take care not to violate the recommended I/O specification (0 V to 3.6 V) to ensure the device functions properly.

10 Layout

www.ti.com.cn

10.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

10.2 Layout Example

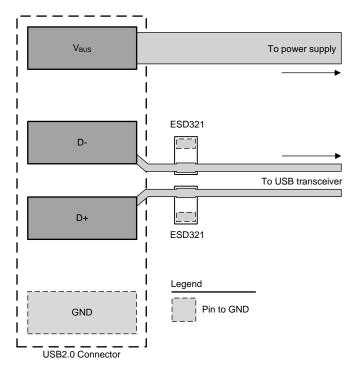


图 12. USB 2.0 ESD Layout

ZHCSIK7-JULY 2018 www.ti.com.cn

Instruments

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

请参阅如下相关文档:

《通用 ESD 器件评估模块》,SLVUBG5

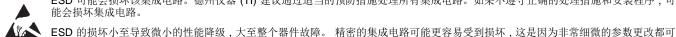
11.2 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的*通知我* 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。


TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 设计支持

11.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

11.6 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

能会导致器件与其发布的规格不相符。

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ESD321DPYR	ACTIVE	X1SON	DPY	2	10000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	DD	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

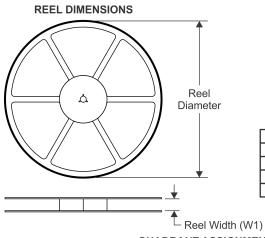
OBSOLETE: TI has discontinued the production of the device.

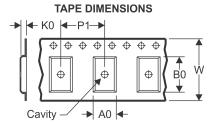
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

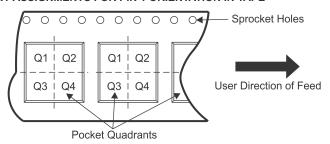
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

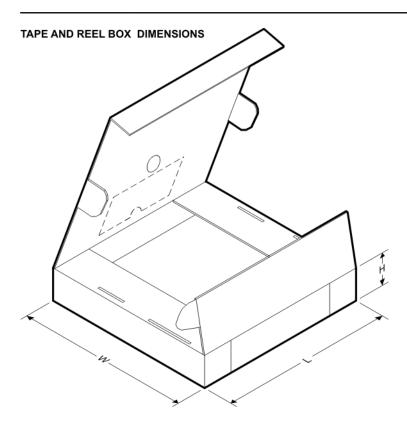
PACKAGE MATERIALS INFORMATION

www.ti.com 27-Sep-2019


TAPE AND REEL INFORMATION

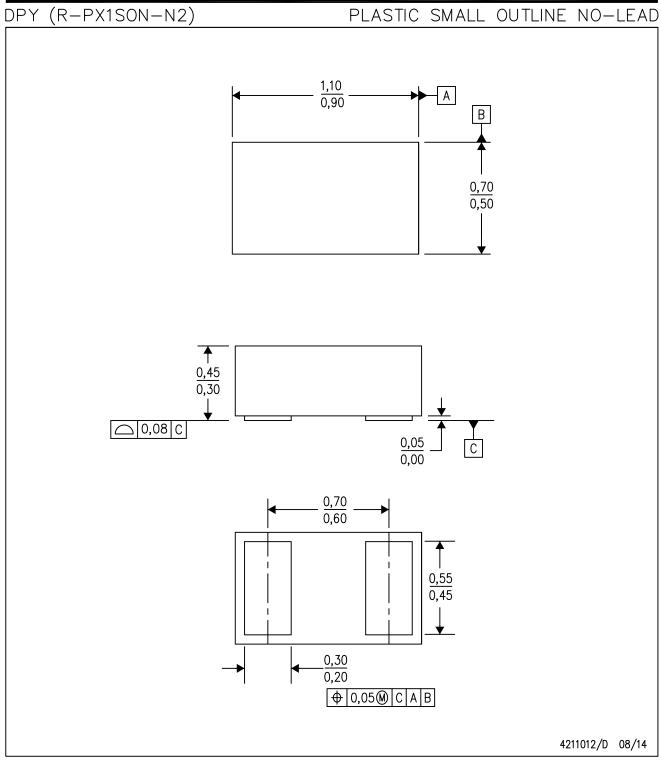
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

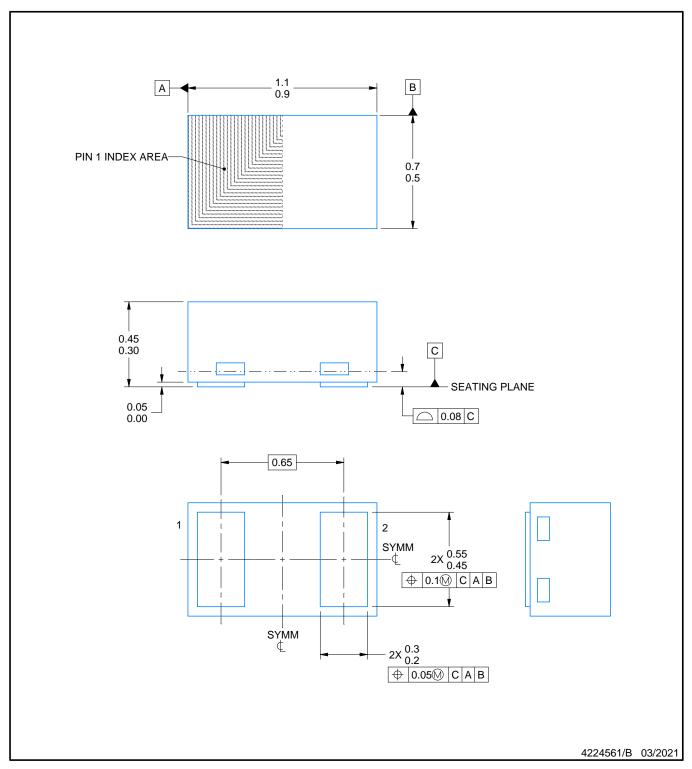
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ESD321DPYR	X1SON	DPY	2	10000	178.0	8.4	0.7	1.15	0.47	2.0	8.0	Q1
ESD321DPYR	X1SON	DPY	2	10000	180.0	8.4	0.07	1.1	0.47	2.0	8.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 27-Sep-2019

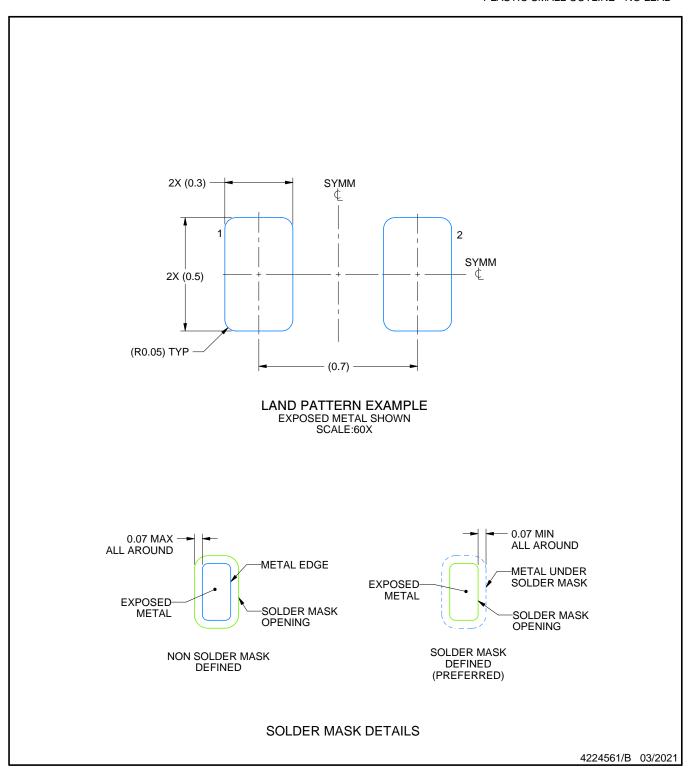
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
ESD321DPYR	X1SON	DPY	2	10000	205.0	200.0	33.0	
ESD321DPYR	X1SON	DPY	2	10000	203.2	196.8	33.3	


NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.C. SON (Small Outline No-Lead) package configuration.

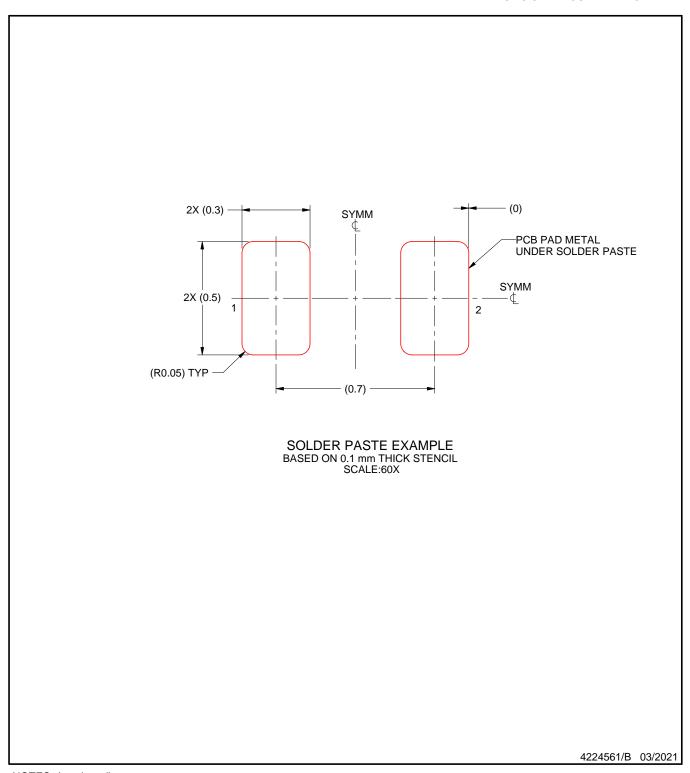
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
- per ASME Y14.5M
 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司