

AFE4403 ZHCSCL7B-MAY 2014-REVISED JULY 2014

AFE4403 超小型,集成模拟前端,用于心率监视器和 低成本脉冲血氧计

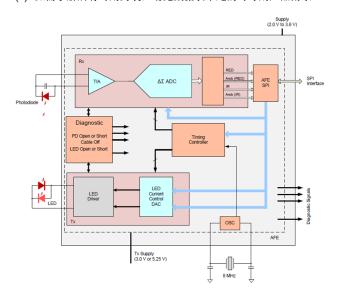
特性

- 完全集成 AFE, 用于脉冲血氧仪 和心率监视器 应 用范围:
- 发射:
 - 集成双路 LED 驱动器 (H 桥或共阳极)
 - 支持经优化 SPO2, HRM 或多波长 HRM 的第 三 LED 选项
 - 高达 110dB 的动态范围
 - LED 电流:
 - 可编程至具有 8 位电流分辨率的 100mA 电
 - 30µA + 平均 LED 电流
 - 可编程 LED 接通时间
 - 独立的 LED2 和 LED1 电流基准
- 具有高动态范围的接收通道:
 - 22 位补码格式输出
 - 高达 105dB 的动态范围
 - 低功率: < 650µA
 - 动态断电模式,以将电流减少至 300µA
 - 可适应极宽范围的信号振幅:
 - 总体可编程增益: 10kΩ 至 4MΩ
 - 集成数字环境估算和删减
- 外部时钟或晶振的灵活计时:
 - 脉冲频率: 62.5SPS 至 2000SPS
 - 灵活的脉冲排序和定时控制
 - 输入时钟范围: 4MHz(最小值)至 60MHz (最大值)
- 集成式故障诊断:
 - 光电二极管和 LED 开路与 短路检测
- 电源:
 - Rx = 2.0V 至 3.6V
 - Tx = 3.0V 至 5.25V
- 封装: 紧凑型芯片尺寸球状引脚栅格阵列 (DSBGA)-36 (3.07mm x 3.07mm x 0.5mm)
- 额定温度范围: -20°C 至 70°C

2 应用

- 医疗脉冲血氧仪应用
- 光学心率监视器 (HRM)
- 工业光测量应用

3 说明


AFE4403 是一款非常适合于脉冲血氧仪应用的完全集 成模拟前端 (AFE)。 此器件包含一个具有集成模数转 换器 (ADC) 的低噪声接收器通道、一个 LED 发射部件 和针对传感器以及 LED 故障检测的诊断功能。 此器件 是一款可配置定时控制器。 这个灵活性使得用户能够 完全控制器件定时特性。 为了简化计时要求并为 AFE4403 提供一个低抖动时钟,还集成了一个由外部 晶振供频的振荡器。 此器件使用一个 SPI™ 接口与外 部微控制器或主机处理器通信。

此器件是一个单体、紧凑型 DSBGA-36 (3.07mm x 3.07mm x 0.5mm) 内的完整 AFE 解决方案, 其额定工 作温度范围为 -20℃ 至 70℃。

器件信息(1)

	HH 11 1H 76.	
部件号	封装	封装尺寸 (标称值)
AFE4403	芯片尺寸球状引脚栅 格阵列 (DSBGA) (36)	3.07mm x 3.07mm

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

	目表	录		
1 2 3 4 5	特性	9	8.3 Feature Description	4: 5: 5:
6 7	Pin Configuration and Functions 3 Specifications 5 7.1 Absolute Maximum Ratings 5 7.2 Handling Ratings 5 7.3 Recommended Operating Conditions 6 7.4 Thermal Information 6 7.5 Electrical Characteristics 7 7.6 Timing Requirements 11 7.7 Timing Requirements: Supply Ramp and Power-Down 12	10 11 12	9.1 Application Information	87 87 88 90 90 90 91 91
8	7.8 Typical Characteristics 14 Detailed Description 20 8.1 Overview 20 8.2 Functional Block Diagram 20	13	12.3 术语表	9 [,]

4 修订历史记录

Changes from Revision A (June 2014) to Revision B	Page
Changed Pin Configuration diagram: changed Top View to Bottom View	3
Added footnote to Figure 41	27
Changes from Original (May 2014) to Revision A	Page
• 已将文档状态更改为生产数据	
• 已更改 灵活计时 特性着重号的第一和第三子着重号	1
• 已在器件信息表的封装尺寸列中将最小值更改为标称值	1
Added Device Family Options table and Pin Configuration and Functions section	3
Added Specifications section	5
Added Detailed Description section	20
Added Application and Implementation section	83
Added Power Supply Recommendations section	
Added Layout section	90

5 Device Family Options

PRODUCT	PACKAGE-LEAD	LED DRIVE CONFIGURATION	LED DRIVE CURRENT (mA, max)	Tx POWER SUPPLY (V)	OPERATING TEMPERATURE RANGE
AFE4400	VQFN-40	Bridge, push-pull	50	3 to 5.25	0°C to 70°C
AFE4490	VQFN-40	Bridge, push-pull	50, 75, 100, 150, and 200	3 to 5.25	-40°C to 85°C
AFE4403	DSBGA-36	Bridge, push-pull	25, 50, 75, and 100	3 to 5.25	–20°C to 70°C

6 Pin Configuration and Functions

YZP Package DSBGA-36 (Bottom View)

	INN	RX_ANA_SUP	XIN	XOUT	DNC	RX_DIG_GND
F	0	0	0	0	0	•
	INP	RX_ANA_GND	DNC	RX_ANA_SUP	RX_DIG_SUP	CLKOUT
E	0	0	0	0	0	0
	VCM	VSS	DNC	RESET	ADC_RDY	SPISTE
D	0	0	o 	0	0	0
	DNC	BG	AFE_PDN	SPISIMO	SPISOMI	SCLK
С	0	0	0	0	0	•
	TX_REF	RX_DIG_GND	TX3	DIAG_END	DNC	DNC
В	0	0	0	0	0	•
	DNC	TX_CTRL_SUP	LED_DRV_GND	TXN	TXP	LED_DRV_SUP
Α	0	0	0	0	0	0
	1	2	3	4	5	6

Pin Functions

Pin Functions					
PIN					
NAME	NO.	FUNCTION	DESCRIPTION		
ADC_RDY	D5	Digital	Output signal that indicates ADC conversion completion. Can be connected to the interrupt input pin of an external microcontroller.		
AFE_PDN	СЗ	Digital	AFE-only power-down input; active low. Can be connected to the port pin of an external microcontroller.		
BG	C2	Reference	Decoupling capacitor for internal band-gap voltage to ground. Connect a decoupling capacitor to ground. To achieve the lowest transmitter noise, use a capacitor value of 2.2 µF. To reduce the recovery time from power-down (from 1 s to 0.1 s), use a capacitor value of 0.1 µF instead—but with slightly degraded transmitter noise.		
CLKOUT	E6	Digital	Buffered 4-MHz output clock output. Can be connected to the clock input pin of an external microcontroller.		
DIAG_END	B4	Digital	Output signal that indicates completion of diagnostics. Can be connected to the port pin of an external microcontroller.		
DNC ⁽¹⁾	C1, A1, E3, D3, F5, B5, B6	_	Do not connect these pins. Leave as open circuit.		
INN	F1	Analog	Receiver input pin. Connect to photodiode anode.		
INP	E1	Analog	Receiver input pin. Connect to photodiode cathode.		
LED_DRV_GND	A3	Supply	LED driver ground pin, H-bridge. Connect to common board ground.		
LED_DRV_SUP	A6	Supply	LED driver supply pin, H-bridge. Connect to an external power supply capable of supplying to large LED current, which is drawn by this supply pin.		
RESET	D4	Digital	AFE-only reset input, active low. Can be connected to the port pin of an external microcontroller		
RX_ANA_GND	E2	Supply	Rx analog ground pin. Connect to common board ground.		
RX_ANA_SUP	F2, E4	Supply	Rx analog supply pin; 0.1-µF decoupling capacitor to ground		
RX_DIG_GND	B2, F6	Supply	Rx digital ground pin. Connect to common board ground.		
RX_DIG_SUP	E5	Supply	Rx digital supply pin; 0.1-µF decoupling capacitor to ground		
SCLK	C6	SPI	SPI clock pin		
SPISIMO	C4	SPI	SPI serial in master out		
SPISOMI	C5	SPI	SPI serial out master in		
SPISTE	D6	SPI	SPI serial interface enable		
TX_CTRL_SUP	A2	Supply	Transmit control supply pin (0.1-µF decoupling capacitor to ground)		
TX_REF	B1	Reference	Transmitter reference voltage, 0.25 V default after reset. Connect a decoupling capacitor to ground. To achieve the lowest transmitter noise, use a capacitor value of 2.2 μF . To reduce the recovery time from power-down (from 1 s to 0.1 s), use a capacitor value of 0.1 μF instead—but with slightly degraded transmitter noise.		
TXN	A4	Analog	LED driver out. Connect to LED in common anode or H-bridge configuration.		
TXP	A5	Analog	LED driver out. Connect to LED in common anode or H-bridge configuration.		
TX3	В3	Analog	LED driver out for third LED. Connect to optional third LED supported in common anode configuration.		
VCM	D1	Reference	Input common-mode voltage output. This signal can be used to shield (guard) the INP, INN traces. If used as a shield, then connect a series resistor (1 k Ω) and a decoupling capacitor (10 nF) ground. If VCM is not used externally, then these external components are not required.		
VSS	D2	Supply	Substrate ground. Connect to common board ground.		
XOUT	F4	Digital	Crystal oscillator pins. Connect an external crystal between these pins with the correct load capacitor (as specified by vendor) to ground.		
XIN	F3	Digital	Crystal oscillator pins. Connect an external crystal between these pins with the correct load capacitor (as specified by vendor) to ground.		

⁽¹⁾ Leave pins as open circuit. Do not connect.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
RX_ANA_SUP, R	X_DIG_SUP to RX_ANA_GND, RX_DIG_GND	-0.3	4	V
TX_CTRL_SUP, L	ED_DRV_SUP to LED_DRV_GND	-0.3	6	V
RX_ANA_GND, R	X_DIG_GND to LED_DRV_GND	-0.3	0.3	V
Analog inputs		RX_ANA_GND - 0.3	RX_ANA_SUP + 0.3	V
Digital inputs		RX_DIG_GND - 0.3	RX_DIG_SUP + 0.3	V
Input current to an	y pin except supply pins ⁽²⁾		±7	mA
Innut ourrant	Momentary		±50	mA
Input current	Continuous		±7	mA
Operating tempera	ature range	0–20	70	°C
Maximum junction	temperature, T _J		125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-60	150	°C
V		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-1000 1000		V
V _(ESD)	Electrostatic discharge Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)		-250	250	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing beyond the supply rails must be current-limited to 10 mA or less.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		MIN	MAX	UNIT
SUPPLIES					
RX_ANA_SUP			2.0	3.6	V
RX_DIG_SUP	JP AFE digital supply		2.0	3.6	V
TX_CTRL_SUP	Transmit controller supply		3.0	5.25	V
LED DDV CLID	Transmit LED driver supply Common anode configuration	H-bridge	[3.0 or (0.75 + V _{LED} + V _{CABLE}) ⁽¹⁾⁽²⁾ , whichever is greater]	5.25	V
LED_DRV_SUP		[3.0 or (0.5 + V _{LED} + V _{CABLE}) ⁽¹⁾⁽²⁾ , whichever is greater]	5.25	V	
	Difference between LED_DRV TX_CTRL_SUP	_SUP and	-0.3	0.3	V
TEMPERATURE					
	Specified temperature range		-20	70	°C
	Storage temperature range		-60	150	°C

⁽¹⁾ V_{LED} refers to the maximum voltage drop across the external LED (at maximum LED current) connected between the TXP and TXN pins (in H-bridge mode) and from the TXP and TXN pins to LED_DRV_SUP (in the common anode configuration).

7.4 Thermal Information

		AFE4403	
	THERMAL METRIC ⁽¹⁾	YZP (WCSP)	UNIT
		36 BALLS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	49.8	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	0.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	8.5	90044
Ψлт	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	8.5	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ V_{CABLE} refers to voltage drop across any cable, connector, or any other component in series with the LED.

7.5 Electrical Characteristics

Minimum and maximum specifications are at $T_A = -20^{\circ}\text{C}$ to 70°C, typical specifications are at 25°C. Crystal mode enabled, detector capacitor = 50 pF differential, ADC averaging set to maximum allowed for each PRF, TX_REF voltage set to 0.5 V, and CLKOUT tri-stated, at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, stage 2 amplifier disabled, and $f_{\text{CLK}} = 8 \text{ MHz}$, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP MA	X UNIT
PERFOR	MANCE (Full-Signal Chain)			
		$R_F = 10 \text{ k}\Omega$	50	μA
		$R_F = 25 \text{ k}\Omega$	20	μA
		$R_F = 50 \text{ k}\Omega$	10	μA
$I_{\rm IN_FS}$	Full-scale input current	$R_F = 100 \text{ k}\Omega$	5	μA
		$R_F = 250 \text{ k}\Omega$	2	μA
		$R_F = 500 \text{ k}\Omega$	1	μA
		$R_F = 1 M\Omega$	0.5	μA
PRF	Pulse repetition frequency		62.5 20	00 SPS
DC_PRF	PRF duty cycle		25	%
CMRR	Common-mode rejection ratio	f_{CM} = 50 Hz and 60 Hz, LED1 and LED2 with R_{SERIES} = 500 $k\Omega,~R_F$ = 500 $k\Omega$	75	dB
CIVILLY	Common-mode rejection ratio	f_{CM} = 50 Hz and 60 Hz, LED1-AMB and LED2-AMB with R_{SERIES} = 500 $k\Omega,~R_F$ = 500 $k\Omega$	95	dB
$PSRR_{LED}$	PSRR, transmit LED driver	With respect to ripple on LED_DRV_SUP	75	dB
$PSRR_Tx$	PSRR, transmit control	With respect to ripple on TX_CTRL_SUP	60	dB
$PSRR_Rx$	PSRR, receiver	With respect to ripple on RX_ANA_SUP and RX_DIG_SUP	60	dB
	Total integrated noise current, input-	$R_F = 100 \text{ k}\Omega$, PRF = 600 Hz, duty cycle = 5%	25	pA _{RMS}
	referred (receiver with transmitter loop back, 0.1-Hz to 20-Hz bandwidth)	$R_F = 500 \text{ k}\Omega$, PRF = 600 Hz, duty cycle = 5%	6	pA _{RMS}
RECEIVE	R FUNCTIONAL BLOCK LEVEL SPECIF	ICATION		
	Total integrated noise current, input referred (receiver alone) over 0.1-Hz to	R_F = 500 k Ω , ambient cancellation enabled, stage 2 gain = 4, PRF = 1200 Hz, LED duty cycle = 25%	3.2	pA _{RMS}
	20-Hz bandwidth	R_F = 500 k Ω , ambient cancellation enabled, stage 2 gain = 4, PRF = 1200 Hz, LED duty cycle = 5%	5.3	pA _{RMS}
I-V TRAN	SIMPEDANCE AMPLIFIER			
G	Gain	R_F = 10 k Ω to 1 $M\Omega$	See the <i>Receiver Channel</i> section for details	V/µA
	Gain accuracy		±7%	
	Feedback resistance	R _F	10k, 25k, 50k, 100k, 250k, 500k, and 1M	Ω
	Feedback resistor tolerance	R _F	±20%	
	Feedback capacitance	C _F	5, 10, 25, 50, 100, and 250	pF
	Feedback capacitor tolerance	C _F ±20%		
Full-scale differential output voltage		1		V
	Common-mode voltage on input pins	Set internally	0.9	V
	External differential input capacitance	Includes equivalent capacitance of photodiode, cables, EMI filter, and so forth	10 10	00 pF
	Shield output voltage, $V_{\rm CM}$	With a 1-kΩ series resistor and a 10-nF decoupling capacitor to ground	0.8 0.9	1 V

Electrical Characteristics (continued)

Minimum and maximum specifications are at $T_A = -20$ °C to 70°C, typical specifications are at 25°C. Crystal mode enabled, detector capacitor = 50 pF differential, ADC averaging set to maximum allowed for each PRF, TX_REF voltage set to 0.5 V, and CLKOUT tri-stated, at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, stage 2 amplifier disabled, and $f_{CLK} = 8$ MHz, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
AMBIEN	T CANCELLATION STAGE				
	Gain		0, 3.5, 6, 9.5,	and 12	dB
	Current DAC range		0	10	μA
	Current DAC step size			1	μA
LOW-PA	ASS FILTER		1		-
	Low-pass corner frequency	3-dB attenuation	50	00	Hz
		Duty cycle = 25%	0.00)4	dB
	Pass-band attenuation, 2 Hz to 10 Hz	Duty cycle = 10%	0.04	11	dB
	Filter settling time	After diagnostics mode		28	ms
ANALO	G-TO-DIGITAL CONVERTER	-			
	Resolution			22	Bits
	Sample rate	See the ADC Operation and Averaging Module section	4 × PF	lF	SPS
	ADC full-scale voltage		±1	.2	V
	ADC conversion time	See the ADC Operation and Averaging Module section		PRF / 4	μs
	ADC reset time ⁽¹⁾		2		t _{CLK}
TRANSI	MITTER				OLIK
	Output current range		Selectable, 0 (see the LEDCN Control Register	ITRL: LED	mA
	LED current DAC error		±10	%	
	Output current resolution			8	Bits
	Transmitter noise dynamic range,	At 25-mA output current	1.	10	dB
	over 0.1-Hz to 20-Hz bandwidth, TX_REF set to 0.5 V	At 50-mA output current	1	10	dB
	Minimum sample time of LED1 and LED2 pulses			50	μs
	LED augreent DAC lookens augreent	LED_ON = 0		1	μΑ
	LED current DAC leakage current	LED_ON = 1		50	μΑ
	LED current DAC linearity	Percent of full-scale current	0.9	50	%
	Output current settling time	From zero current to 50 mA		7	μs
	(with resistive load)	From 50 mA to zero current		7	μs
DIAGNO	STICS				
	Duration of diagnostics state machine	Start of diagnostics after the DIAG_EN register bit is set. End of diagnostic is indicated by DIAG_END going high.		16	ms
	Open fault resistance		> 10	00	kΩ
	Short fault resistance		< '	10	kΩ
INTERN	AL OSCILLATOR				
f _{CLKOUT}	CLKOUT frequency	With an 8-MHz crystal connected to the XIN, XOUT pins		4	MHz
	CLKOUT duty cycle		50	%	
	Crystal oscillator start-up time	With an 8-MHz crystal connected to the XIN, XOUT pins	20	00	μs

⁽¹⁾ A low ADC reset time can result in a small component of the LED signal leaking into the ambient phase. With an ADC reset of two clock cycles, a –60-dB leakage is expected. In many cases, this leakage does not affect system performance. However, if this crosstalk must be completely eliminated, a longer ADC reset time of approximately six clock cycles is recommended for t₂₂, t₂₄, t₂₆, and t₂₈ in Figure 48.

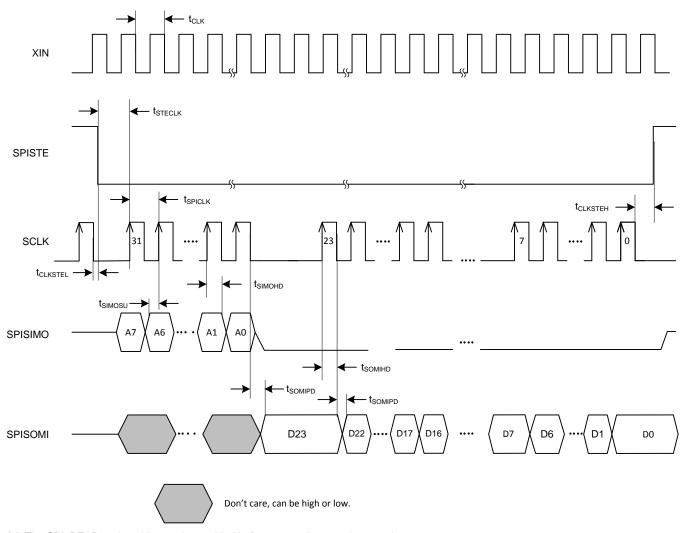
Electrical Characteristics (continued)

Minimum and maximum specifications are at $T_A = -20^{\circ}\text{C}$ to 70°C , typical specifications are at 25°C . Crystal mode enabled, detector capacitor = 50 pF differential, ADC averaging set to maximum allowed for each PRF, TX_REF voltage set to 0.5 V, and CLKOUT tri-stated, at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, stage 2 amplifier disabled, and $f_{\text{CLK}} = 8$ MHz, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EXTERN	AL CLOCK		-			
		For SPO2 applications		50		ps
	Maximum allowable external clock jitter	For optical heart rate only			1000	ps
	External clock input frequency (2)	±2%	4	8	60	MHz
	Faternal also bis south calls	Voltage input high (V _{IH})	RX_DIG	0.75 x G_SUP		V
	External clock input voltage	Voltage input low (V _{IL})	RX_DIG	0.25 x 6_SUP		V
TIMING						
	Wake-up time from complete power-down			1000		ms
	Wake-up time from Rx power-down			100		μs
	Wake-up time from Tx power-down			1000		ms
t _{RESET}	Active low RESET pulse duration			1		ms
t _{DIAGEND}	DIAG_END pulse duration at the completion of diagnostics			4		CLKOUT cycles
t _{ADCRDY}	ADC_RDY pulse duration			1		CLKOUT cycle
DIGITAL	SIGNAL CHARACTERISTICS					
V _{IH}	Logic high input voltage	AFE_PDN, SCLK, SPISIMO, SPISTE, RESET	0.8 DVDD	> 1.3	DVDD + 0.1	V
V _{IL}	Logic low input voltage	AFE_PDN, SCLK, SPISIMO, SPISTE, RESET	-0.1	< 0.4	0.2 DVDD	V
I _{IN}	Logic input current	0 V < V _{DigitalInput} < DVDD	-10		10	μΑ
V _{OH}	Logic high output voltage	DIAG_END, SPISOMI, ADC_RDY, CLKOUT	0.9 > DVDD	· (RX_DI	G_SUP - 0.2 V)	V
V _{OL}	Logic low output voltage	DIAG_END, SPISOMI, ADC_RDY, CLKOUT		< 0.4	0.1 DVDD	V
SUPPLY	CURRENT					
		RX_ANA_SUP = 3.0 V, with 8-MHz clock running, Rx stage 2 disabled		0.6		mA
	Receiver analog supply current	RX_ANA_SUP = 3.0 V, with 8-MHz clock running, Rx stage 2 enabled		0.7		mA
		RX_ANA_SUP = 3.0 V, with 8-MHz clock running, Rx stage 2 disabled, external clock mode		0.49		mA
	Receiver digital supply current	RX_DIG_SUP = 3.0 V		0.15		mA
	LED driver supply current	With zero LED current setting		30		μΑ
	Transmitter control supply current			15		μΑ
		Receiver current only (RX_ANA_SUP)		3		μΑ
	Complete power-down	Receiver current only (RX_DIG_SUP)		3		μΑ
	(using the AFE_PDN pin)	Transmitter current only (LED_DRV_SUP)		1		μA
		Transmitter current only (TX_CTRL_SUP)		1		μA
	Power-down Rx alone	Receiver current only (RX_ANA_SUP)		200		μA
	i ower-down its alone	Receiver current only (RX_DIG_SUP)		150		μA
	Power-down Tx alone	Transmitter current only (LED_DRV_SUP)		2		μA
	I OWGI-GOWII IA GIOIIC	Transmitter current only (TX_CTRL_SUP)		2		μA

⁽²⁾ Refer to the CLKDIV[2:0] register bits for a detailed list of input clock frequencies that are supported.

Electrical Characteristics (continued)


Minimum and maximum specifications are at $T_A = -20$ °C to 70°C, typical specifications are at 25°C. Crystal mode enabled, detector capacitor = 50 pF differential, ADC averaging set to maximum allowed for each PRF, TX_REF voltage set to 0.5 V, and CLKOUT tri-stated, at RX_ANA_SUP = RX_DIG_SUP = 3 V, TX_CTRL_SUP = LED_DRV_SUP = 3.3 V, stage 2 amplifier disabled, and $f_{CLK} = 8$ MHz, unless otherwise noted.

PARAMETER		TEST	CONDITIONS	MIN	TYP	MAX	UNIT
POWER DISSIPATION							
	LED_DRV_SUP	Does not include LED current.			1		μA
Power-down with	TX_CTRL_SUP				1		μA
the AFE_PDN pin	RX_ANA_SUP				5		μΑ
	RX_DIG_SUP				0.1		μΑ
	LED_DRV_SUP	Does not include LED curr	ent.		1		μA
Power-down with the PDNAFE	TX_CTRL_SUP				1		μA
register bit	RX_ANA_SUP				15		μA
	RX_DIG_SUP				20		μA
	LED_DRV_SUP	Does not include LED curr	ent.		30		μA
Power-down Rx	TX_CTRL_SUP				15		μA
Power-down KX	RX_ANA_SUP				200		μA
	RX_DIG_SUP				150		μA
	LED_DRV_SUP	Does not include LED curr	ent.		2		μΑ
Power-down Tx	TX_CTRL_SUP				2		μA
Fower-down 1x	RX_ANA_SUP				600		μΑ
	RX_DIG_SUP				150		μΑ
	LED_DRV_SUP	Does not include LED curr	ent.		30		μΑ
After reset, with 8-	TX_CTRL_SUP				15		μΑ
MHz clock running	RX_ANA_SUP				600		μΑ
	RX_DIG_SUP				150		μΑ
	stage 2 mode TX CTRL SUP	Does not include LED curr	ent.		30		μΑ
With stage 2 mode enabled and 8-MHz					15		μΑ
clock running	RX_ANA_SUP				700		μΑ
	RX_DIG_SUP				150		μΑ
	LED_DRV_SUP	Does not include LED current.			7		μΑ
Dynamic power- down mode enabled	TX_CTRL_SUP		PRF = 100 Hz, PDN_CYCLE duration = 8 ms		5		μΑ
down mode enabled	RX_ANA_SUP		FDIN_CTOLE QUIALION = 6 MS		205		μΑ
	RX_DIG_SUP				150		μΑ

7.6 Timing Requirements

	PARAMETER	MIN	TYP	MAX	UNIT
t _{CLK}	Clock frequency on the XIN pin		8		MHz
t _{SCLK}	Serial shift clock period	62.5			ns
t _{STECLK}	STE low to SCLK rising edge, setup time	10			ns
t _{CLKSTEH,L}	SCLK transition to SPI STE high or low	10			ns
t _{SIMOSU}	SIMO data to SCLK rising edge, setup time	10			ns
tsimohd	Valid SIMO data after SCLK rising edge, hold time	10			ns
t _{SOMIPD}	SCLK falling edge to valid SOMI, setup time	17			ns
t _{SOMIHD}	SCLK rising edge to invalid data, hold time	0.5			t _{SCLK}

- (1) The SPI_READ register bit must be enabled before attempting a register read.
- (2) Specify the register address whose contents must be read back on A[7:0].
- (3) The AFE outputs the contents of the specified register on the SPISOMI pin.

Figure 1. Serial Interface Timing Diagram, Read Operation⁽¹⁾⁽²⁾⁽³⁾

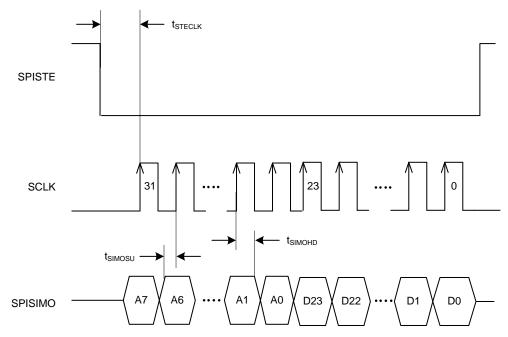


Figure 2. Serial Interface Timing Diagram, Write Operation

7.7 Timing Requirements: Supply Ramp and Power-Down

	PARAMETER	VALUE
t ₁	Time between Rx and Tx supplies ramping up	Keep as small as possible (for example, ±10 ms)
t ₂	Time between both supplies stabilizing and high-going RESET edge	> 100 ms
t ₃	RESET pulse duration	> 0.5 ms
t ₄	Time between RESET and SPI commands	> 1 µs
t ₅	Time between SPI commands and the ADC_ $\overline{\text{RESET}}$ which corresponds to valid data	$>$ 3 ms of cumulative sampling time in each phase $^{(1)(2)(3)}$
t ₆	Time between $\overline{\text{RESET}}$ pulse and high-accuracy data coming out of the signal chain	> 1 s ⁽³⁾
t ₇	Time from AFE_PDN high-going edge and RESET pulse ⁽⁴⁾	> 100 ms
t ₈	Time from AFE_PDN high-going edge (or PDN_AFE bit reset) to high-accuracy data coming out of the signal chain	> 1 s ⁽³⁾

- (1) This time is required for each of the four switched RC filters to fully settle to the new settings. The same time is applicable whenever there is a change to any of the signal chain controls (for example, LED current setting, TIA gain, and so forth).
- (2) If the SPI commands involve a change in the TX_REF value from its default, then there is additional wait time of approximately 1 s (for a 2.2-μF decoupling capacitor on the TX_REF pin).
- (3) Dependent on the value of the capacitors on the BG and TX_REF pins. The 1-s wait time is necessary when the capacitors are 2.2 μF and scale down proportionate to the capacitor value. A very low capacitor (for example, 0.1 μF) on these pins causes the transmitter dynamic range to reduce to approximately 100 dB.
- (4) After an active power-down from AFE_PDN, the device should be reset using a low-going RESET pulse.

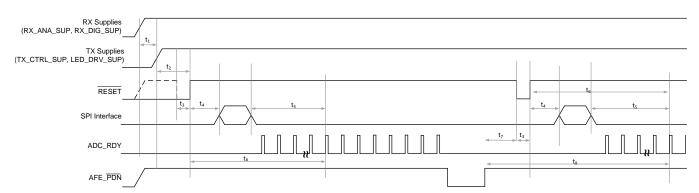


Figure 3. Supply Ramp and Hardware Power-Down Timing

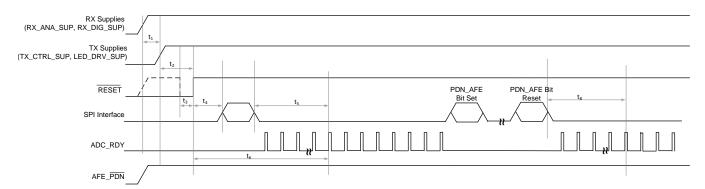
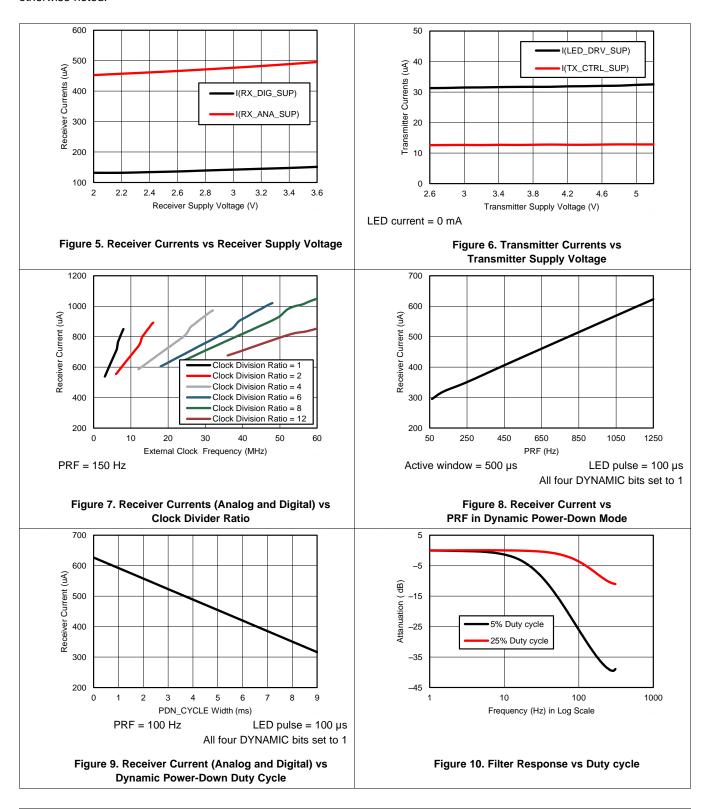
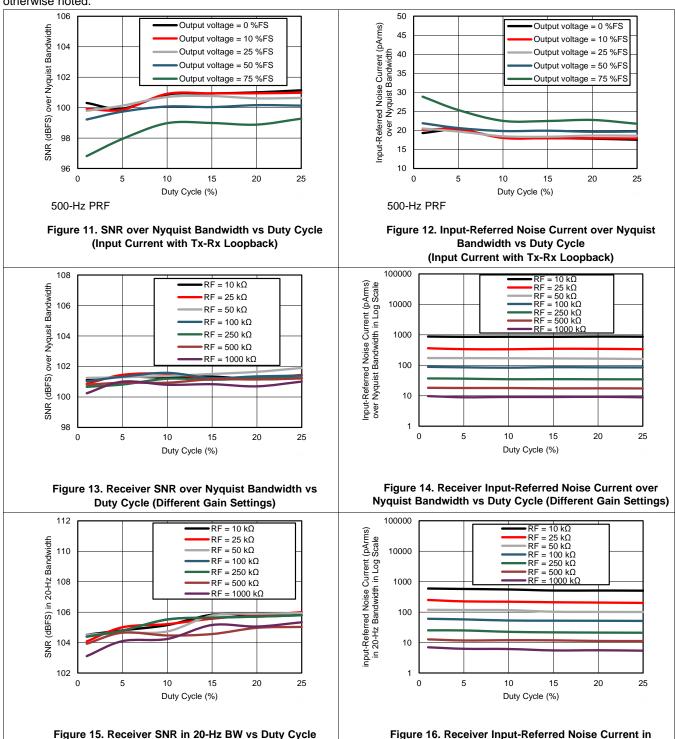
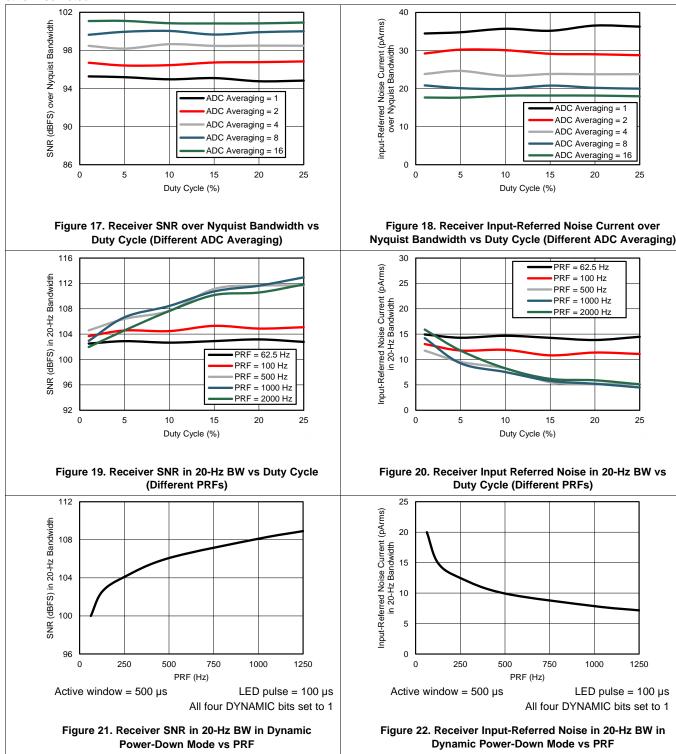
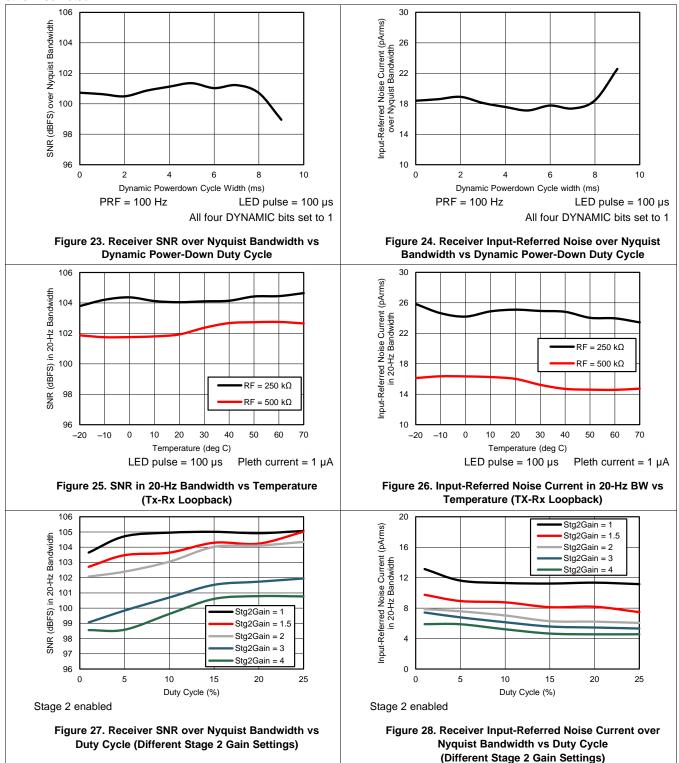



Figure 4. Supply Ramp and Software Power-Down Timing

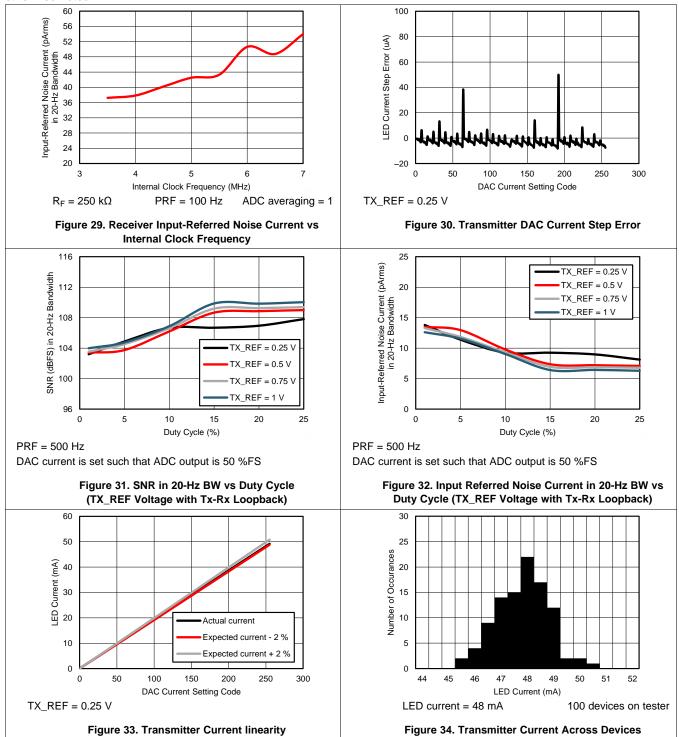


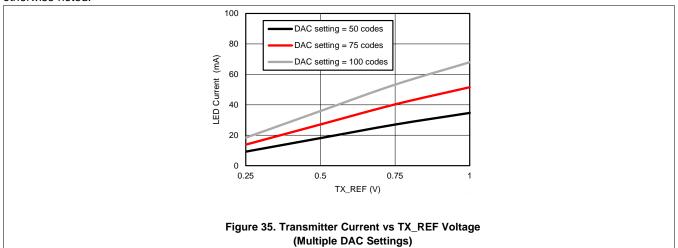
7.8 Typical Characteristics

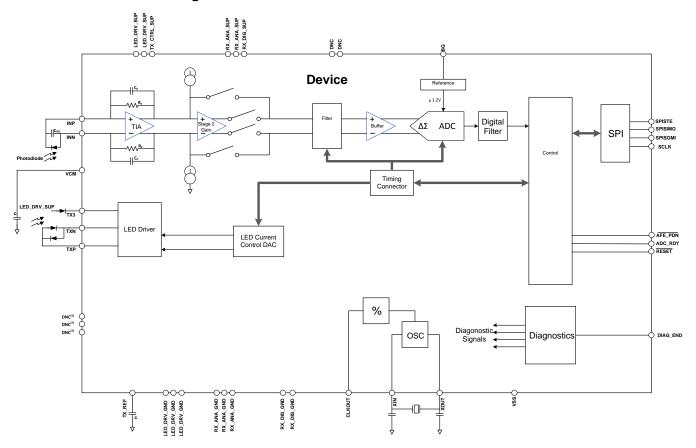

At PRF = 100 Hz, 25% duty cycle, R_F = 500 k Ω , C_F is adjusted to keep TIA time constant at 1/10th of sampling duration, All supplies at 3.3 V, 8-MHz external clock, CLKOUT tri-state, 1- μ F capacitor on TX_REF and BG pins, detector C_{IN} = 50 pF, TX_REF = 0.5 V, ADC averaging = max allowed, and SNR in dBFS is noise referred to full-scale range of 2 V, unless otherwise noted.


(Different Gain Settings)

20-Hz BW vs Duty Cycle (Different Gain Settings)







8 Detailed Description

8.1 Overview

The AFE4403 is a complete analog front-end (AFE) solution targeted for pulse oximeter applications. The device consists of a low-noise receiver channel, an LED transmit section, and diagnostics for sensor and LED fault detection. To ease clocking requirements and provide the low-jitter clock to the AFE, an oscillator is also integrated that functions from an external crystal. The device communicates to an external microcontroller or host processor using an SPI interface. The *Functional Block Diagram* section provides a detailed block diagram for the AFE4403. The blocks are described in more detail in the following sections.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Receiver Channel

This section describes the functionality of the receiver channel.

8.3.1.1 Receiver Front-End

The receiver consists of a differential current-to-voltage (I-V) transimpedance amplifier (TIA) that converts the input photodiode current into an appropriate voltage, as shown in Figure 36. The feedback resistor of the amplifier (R_F) is programmable to support a wide range of photodiode currents. Available R_F values include: 1 M Ω , 500 k Ω , 250 k Ω , 100 k Ω , 50 k Ω , 25 k Ω , and 10 k Ω .

The device is ideally suited as a front-end for a PPG (photoplethysmography) application. In such an application, the light from the LED is reflected (or transmitted) from (or through) the various components inside the body (such as blood, tissue, and so forth) and are received by the photodiode. The signal received by the photodiode has three distinct components:

- 1. A pulsatile or ac component that arises as a result of the changes in blood volume through the arteries.
- 2. A constant dc signal that is reflected or transmitted from the time invariant components in the path of light. This constant dc component is referred to as the pleth signal.
- 3. Ambient light entering the photodiode.

The ac component is usually a small fraction of the pleth component, with the ratio referred to as the perfusion index (PI). Thus, the allowed signal chain gain is usually determined by the amplitude of the dc component.

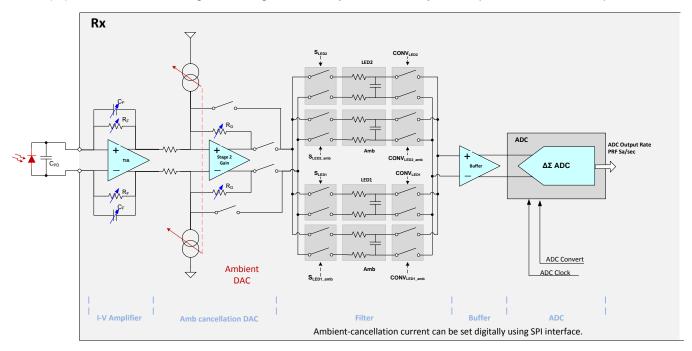


Figure 36. Receiver Front-End

The R_F amplifier and the feedback capacitor (C_F) form a low-pass filter for the input signal current. Always ensure that the low-pass filter RC time constant has sufficiently high bandwidth (as shown by Equation 1) because the input current consists of pulses. For this reason, the feedback capacitor is also programmable. Available C_F values include: 5 pF, 10 pF, 25 pF, 50 pF, 100 pF, and 250 pF. Any combination of these capacitors can also be used.

$$R_{\rm F} \times C_{\rm F} \leq \frac{{\rm Rx~Sample~Time}}{10} \tag{1}$$

The output voltage of the I-V amplifier includes the pleth component (the desired signal) and a component resulting from the ambient light leakage. The I-V amplifier is followed by the second stage, which consists of a current digital-to-analog converter (DAC) that sources the cancellation current and an amplifier that gains up the pleth component alone. The amplifier has five programmable gain settings: 0 dB, 3.5 dB, 6 dB, 9.5 dB, and 12 dB. The gained-up pleth signal is then low-pass filtered (500-Hz bandwidth) and buffered before driving a 22-bit ADC. The current DAC has a cancellation current range of 10 μ A with 10 steps (1 μ A each). The DAC value can be digitally specified with the SPI interface. Using ambient compensation with the ambient DAC allows the dc-biased signal to be centered to near mid-point of the amplifier (±0.9 V). Using the gain of the second stage allows for more of the available ADC dynamic range to be used.

The output of the ambient cancellation amplifier is separated into LED2 and LED1 channels. When LED2 is on, the amplifier output is filtered and sampled on capacitor C_{LED2} . Similarly, the LED1 signal is sampled on the C_{LED1} capacitor when LED1 is on. In between the LED2 and LED1 pulses, the idle amplifier output is sampled to estimate the ambient signal on capacitors C_{LED2} amb and C_{LED1} amb.

The sampling duration is termed the *Rx sample time* and is programmable for each signal, independently. The sampling can start after the I-V amplifier output is stable (to account for LED and cable settling times). The Rx sample time is used for all dynamic range calculations; the minimum time recommended is 50 µs. While the AFE4403 can support pulse widths lower than 50 us, having too low a pulse width could result in a degraded signal and noise from the photodiode.

A single, 22-bit ADC converts the sampled LED2, LED1, and ambient signals sequentially. Each conversion provides a single digital code at the ADC output. As discussed in the *Receiver Timing* section, the conversions are meant to be staggered so that the LED2 conversion starts after the end of the LED2 sample phase, and so on.

Note that four data streams are available at the ADC output (LED2, LED1, ambient LED2, and ambient LED1) at the same rate as the pulse repetition frequency. The ADC is followed by a digital ambient subtraction block that additionally outputs the (LED2 – ambient LED2) and (LED1 – ambient LED1) data values.

The model of the photodiode and the connection to the TIA is shown in Figure 37.

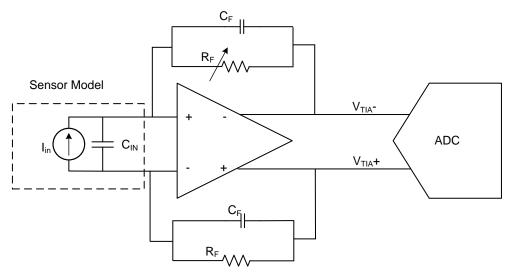


Figure 37. TIA Block Diagram

 I_{in} is the signal current generated by the photodiode in response to the incident light. C_{in} is the zero-bias capacitance of the photodiode. The current-to-voltage gain in the TIA is given by Equation 2:

$$V_{TIA} (diff) = V_{TIA}^{+} - V_{TIA}^{-} = 2 \times I_{in} \times R_{F}$$
(2)

For example, for a photodiode current of I_{in} = 1 μ A and a TIA gain setting of R_F = 100 $k\Omega$, the differential output of the TIA is equal to 200 mV. The TIA has an operating range of ±1 V, and the ADC has an input full-scale range of ±1.2 V (the extra margin is to prevent the ADC from saturating while operating the TIA at the fullest output range). Furthermore, because the PPG signal is one-sided, only one half of the full-scale is used. TI recommends operating the device at a dc level that is not more than 50% to 60% of the ADC full-scale. The margin allows for sudden changes in the signal level that might saturate the signal chain if operating too close to full-scale. Signal levels are shown in Figure 38:

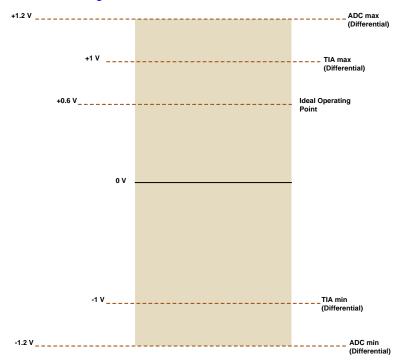


Figure 38. Signal Levels in TIA and ADC

On startup, a gain calibration algorithm running on the microcontroller unit (MCU) can be used to monitor the dc level and adjusts the LED current and TIA gain to get close to the target dc level. In addition to a target dc level, a high and low threshold (for example 80% and 20% of full-scale) can be determined that can cause the algorithm to switch to a different TIA gain or LED current setting when the signal amplitude changes beyond these thresholds.

In heart rate monitoring (HRM) applications demanding small-form factors, the sensor size can be so small (and the signal currents so low) that they do not occupy even 50% of full-scale even with the highest TIA gain setting of 1 M Ω , which is the case for signal currents that are less than 300 nA. As such, experimentation with various use cases is essential in order to determine the optimal target value, as well as high and low thresholds. Also, by enabling the stage 2 and introducing additional gain (up to 12 dB), a few extra decibels of SNR can be achieved.

8.3.1.2 Ambient Cancellation Scheme and Second Stage Gain Block

The receiver provides digital samples corresponding to ambient duration. The host processor (external to the AFE) can use these ambient values to estimate the amount of ambient light leakage. The processor must then set the value of the ambient cancellation DAC using the SPI, as shown in Figure 39.

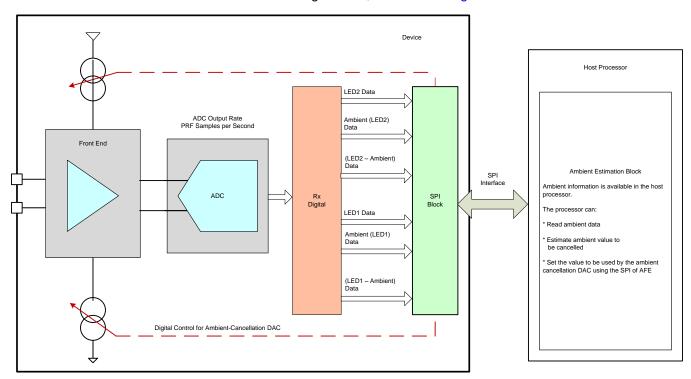


Figure 39. Ambient Cancellation Loop (Closed by the Host Processor)

Using the set value, the ambient cancellation stage subtracts the ambient component and gains up only the pleth component of the received signal; see Figure 40. The amplifier gain is programmable to 0 dB, 3.5 dB, 6 dB, 9.5 dB, and 12 dB.

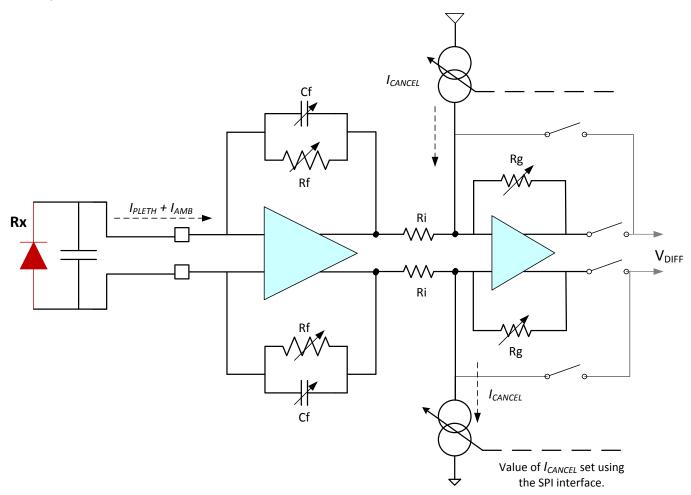


Figure 40. Front-End (I-V Amplifier and Cancellation Stage)

(3)

Feature Description (continued)

The differential output of the second stage is V_{DIFF}, as given by Equation 3:

$$V_{\text{DIFF}} = 2 \times \left[I_{\text{PLETH}} \times \frac{R_{\text{F}}}{R_{\text{I}}} + I_{\text{AMB}} \times \frac{R_{\text{F}}}{R_{\text{I}}} - I_{\text{CANCEL}} \right] \times R_{\text{G}}$$

where:

- $R_1 = 100 \text{ k}\Omega$
- I_{PLETH} = photodiode current pleth component,
- I_{AMB} = photodiode current ambient component, and
- I_{CANCEL} = the cancellation current DAC value (as estimated by the host processor).

R_G values with various gain settings are listed in Table 1.

Table 1. R_G Values

GAIN	R _G (kΩ)
0 (x1)	100
3.5 (x1.5)	150
6 (x2)	200
9.5 (x3)	300
12 (x4)	400

8.3.1.3 Receiver Control Signals

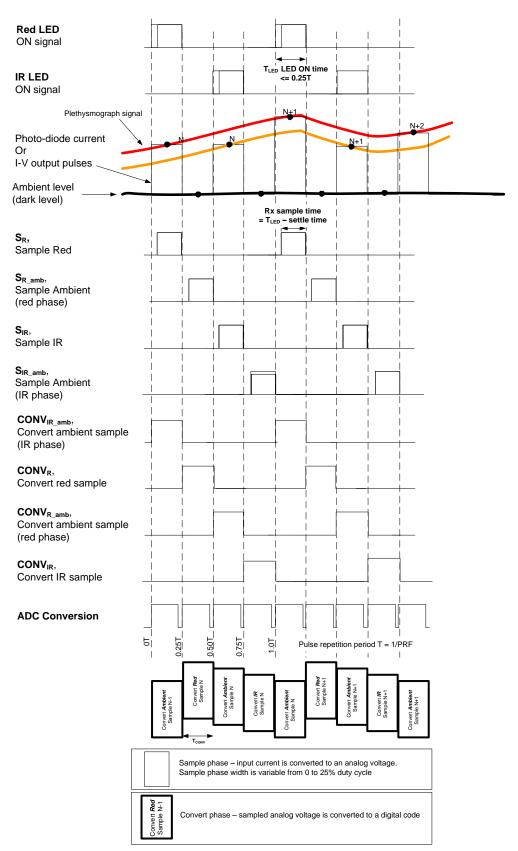
LED2 sample phase (S_{LED2} or S_R): When this signal is high, the amplifier output corresponds to the LED2 ontime. The amplifier output is filtered and sampled into capacitor C_{LED2} . To avoid settling effects resulting from the LED or cable, program S_{LED2} to start after the LED turns on. This settling delay is programmable.

Ambient sample phase (S_{LED2_amb} or S_{R_amb}): When this signal is high, the amplifier output corresponds to the LED2 off-time and can be used to estimate the ambient signal (for the LED2 phase). The amplifier output is filtered and sampled into capacitor C_{LED2_amb} .

LED1 sample phase (S_{LED1} or S_{IR}): When this signal is high, the amplifier output corresponds to the LED1 ontime. The amplifier output is filtered and sampled into capacitor C_{LED1} . To avoid settling effects resulting from the LED or cable, program S_{LED1} to start after the LED turns on. This settling delay is programmable.

Ambient sample phase (S_{LED1_amb} or S_{IR_amb}): When this signal is high, the amplifier output corresponds to the LED1 off-time and can be used to estimate the ambient signal (for the LED1 phase). The amplifier output is filtered and sampled into capacitor C_{LED1_amb} .

LED2 convert phase (CONV_{LED2} or **CONV**_R): When this signal is high, the voltage sampled on C_{LED2} is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the LED2 sample.


Ambient convert phases (CONV_{LED2_amb} or CONV_{R_amb}, CONV_{LED1_amb} or CONV_{IR_amb}): When this signal is high, the voltage sampled on C_{LED2_amb} (or C_{LED1_amb}) is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the ambient sample.

LED1 convert phase (CONV_{LED1} or **CONV**_{IR}): When this signal is high, the voltage sampled on C_{LED1} is buffered and applied to the ADC for conversion. At the end of the conversion, the ADC provides a single digital code corresponding to the LED1 sample.

8.3.1.4 Receiver Timing

See Figure 41 for a timing diagram detailing the control signals related to the LED on-time, Rx sample time, and the ADC conversion times for each channel. Figure 41 shows the timing for a case where each phase occupies 25% of the pulse repetition period. However, this percentage is not a requirement. In cases where the device is operated with low pulse repetition frequency (PRF) or low LED pulse durations, the active portion of the pulse repetition period can be reduced. Using the dynamic power-down feature, the overall power consumption can be significantly reduced.

NOTE: Relationship to the AFE4403 EVM is: LED1 = IR and LED2 = RED.

Figure 41. Rx Timing Diagram

8.3.2 Clocking and Timing Signal Generation

The crystal oscillator generates a master clock signal using an external crystal. In the default mode, a divide-by-2 block converts the 8-MHz clock to 4 MHz, which is used by the AFE to operate the timer modules, ADC, and diagnostics. The 4-MHz clock is buffered and output from the AFE in order to clock an external microcontroller. The clocking functionality is shown in Figure 42.

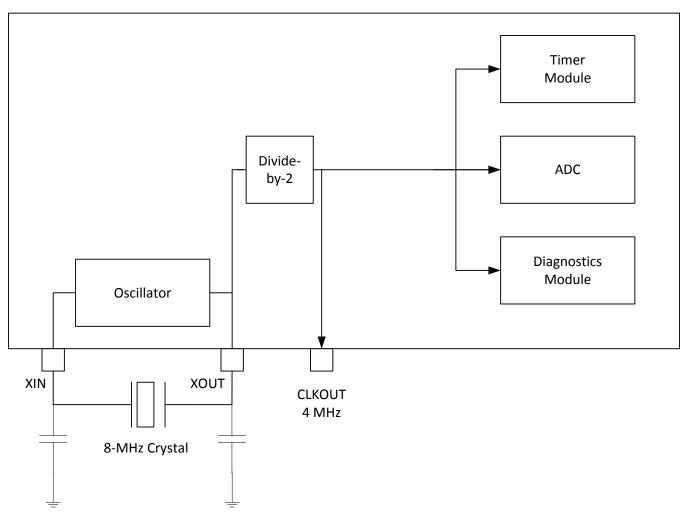


Figure 42. AFE Clocking

To enable flexible clocking, the AFE4403 has a clock divider with programmable division ratios. While the default division ratio is divide-by-2, the clock divider can be programmed to select between ratios of 1, 2, 4, 6, 8, or 12. The division ratio should be selected based on the external clock input frequency such that the divided clock has a frequency close to 4 MHz. For this reason, CLKOUT is referred as <u>a 4-MHz</u> clock in this document. When operating with an external clock input, the divider is reset based on the RESET rising edge. Figure 43 shows the case where the divider ratio is set to divide-by-2.

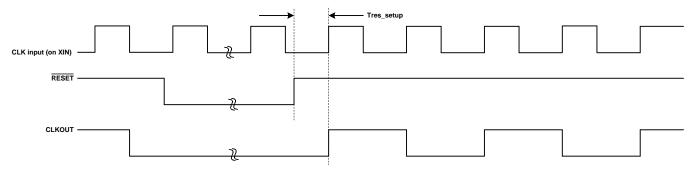


Figure 43. Clock Divider Reset

The device supports both external clock mode as well as an internal clock mode with external crystal.

In the external clock mode, an external clock is input on the XIN pin and the device internally generates the internal clock (used by the timing engine and the ADC) by a programmable division ratio. After division, the internal clock should be within a range of 4 MHz to 6 MHz. The exact frequency of this divided clock is one of the pieces of information required to establish the heart rate being measured from the pulse data.

In internal clock mode, an external crystal (connected between XIN and XOUT) is used to generate the clock. To generate sustained oscillations, the oscillator within the AFE provides negative resistance to cancel out the ESR of the crystal. A good rule of thumb is to limit the ESR of the crystal to less than a third of the negative resistance achievable by the oscillator. Figure 44 shows the connection of Crystal to AFE4403.

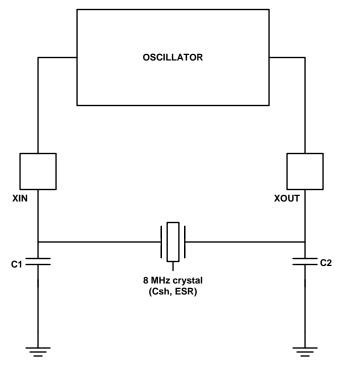


Figure 44. Connection of Crystal to AFE4403

In Figure 44 the crystal is characterized by a capacitance, C_{sh} (shunt capacitance of the crystal) and an equivalent series resistance (ESR). C1 and C2 are external capacitors added at the XIN and XOUT pins.

The negative resistance achievable from the internal oscillator is given by Equation 4:

$$R = -1 / (2 \times \omega \times C_{sh} \times [1 + C_{sh} / C_L])$$

where

- $C_1 = (C1 \times C2) / (C1 + C2),$
- ω is the frequency of oscillation in rads,
- C_{sh} is the shunt capacitor of the crystal, and
- C1, C2 are the capacitors to ground from the XIN, XOUT pins. A value of approximately 15 pF is recommended for C1, C2.

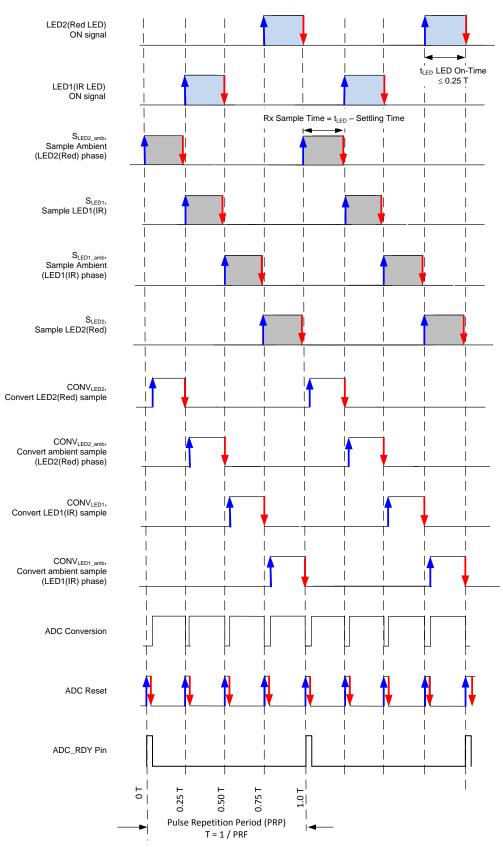
For example, with $C_{sh} = 8$ pF, C1 = C2 = 15 pF, and a frequency of 8 MHz, the result is Equation 5:

$$R = -600 \Omega \tag{5}$$

Thus, the crystal ESR is limited to less than approximately 200 Ω .

TI highly recommends that a single clock source be used to generate the clock required by the AFE as well as the clock needed by the microcontroller (MCU). If an independent clock source is used by the MCU, then any energy coupling into the AFE supply or ground or input pins can cause aliased spurious tones close to the heart rate being measured. To enable operation with the single clock source between the AFE and the MCU, two options are possible:

- 1. **AFE clock as master:** The AFE uses a crystal to generate its clock. CLKOUT from the AFE is used as the input clock for the MCU.
- 2. MCU clock as master: The AFE operates with an external clock provided by the MCU.


Note that the switching of CLKOUT consumes power. Thus, if CLKOUT is not used, it can be shut off using the CLKOUT_TRI bit.

8.3.3 Timer Module

See Figure 45 for a timing diagram detailing the various timing edges that are programmable using the timer module. The rising and falling edge positions of 11 signals can be controlled. The module uses a single 16-bit counter (running off of the 4-MHz clock) to set the time-base.

All timing signals are set with reference to the pulse repetition period (PRP). Therefore, a dedicated compare register compares the 16-bit counter value with the reference value specified in the PRF register. Every time that the 16-bit counter value is equal to the reference value in the PRF register, the counter is reset to 0.

NOTE: Programmable edges are shown in blue and red.

Figure 45. AFE Control Signals

For the timing signals in Figure 41, the start and stop edge positions are programmable with respect to the PRF period. Each signal uses a separate timer compare module that compares the counter value with preprogrammed reference values for the start and stop edges. All reference values can be set using the SPI interface.

After the counter value has exceeded the stop reference value, the output signal is set. When the counter value equals the stop reference value, the output signal is reset. Figure 46 shows a diagram of the timer compare register. With a 4-MHz clock, the edge placement resolution is 0.25 µs.

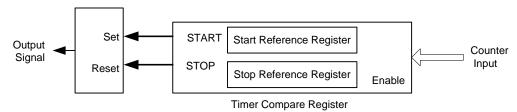


Figure 46. Compare Register

The ADC conversion signal requires four pulses in each PRF clock period. Timer compare register 11 uses four sets of start and stop registers to control the ADC conversion signal, as shown in Figure 47.

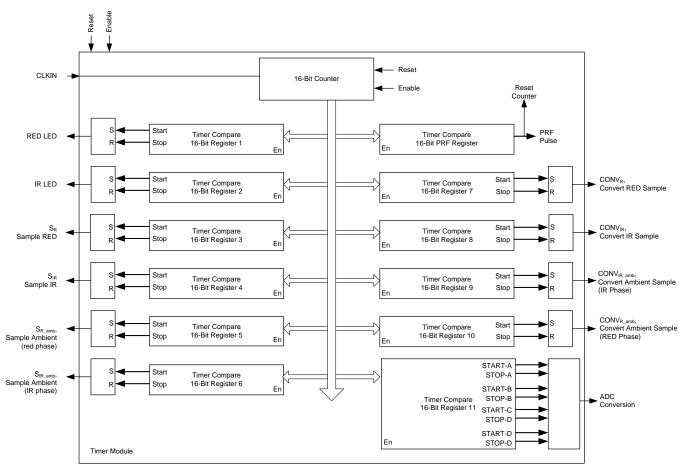


Figure 47. Timer Module

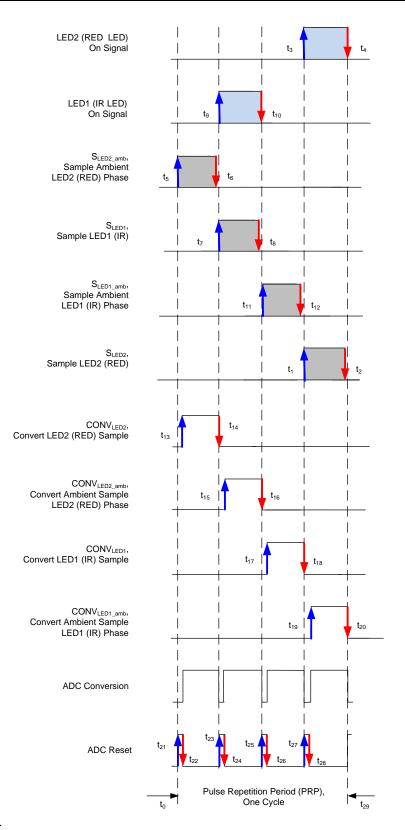
8.3.3.1 Using the Timer Module

The timer module registers can be used to program the start and end instants in units of 4-MHz clock cycles. These timing instants and the corresponding registers are listed in Table 2.

Note that the device does not restrict the values in these registers; thus, the start and end edges can be positioned anywhere within the pulse repetition period. Care must be taken by the user to program suitable values in these registers to avoid overlapping the signals and to make sure none of the edges exceed the value programmed in the PRP register. Writing the same value in the start and end registers results in a pulse duration of one clock cycle. The following steps describe the timer sequencing configuration:

- 1. With respect to the start of the PRP period (indicated by timing instant t_0 in Figure 48), the following sequence of conversions must be followed in order: convert LED2 \rightarrow LED2 ambient \rightarrow LED1 \rightarrow LED1 ambient.
- 2. Also, starting from t₀, the sequence of sampling instants must be staggered with respect to the respective conversions as follows: sample LED2 ambient → LED1 → LED1 ambient → LED2.
- 3. Finally, align the edges for the two LED pulses with the respective sampling instants.

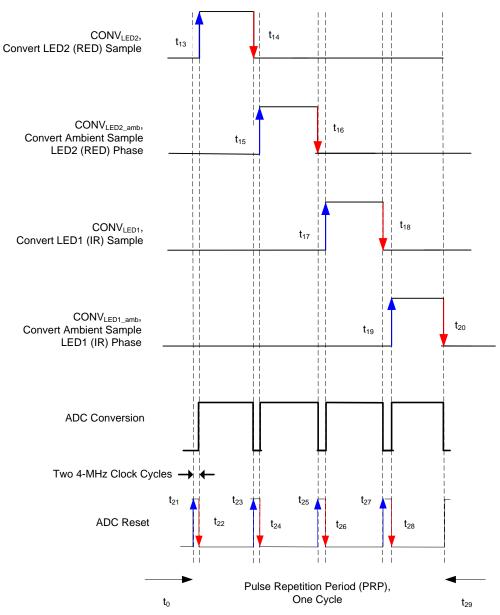
Table 2. Clock Edge Mapping to SPI Registers


t ₀ Start of pulse repetition period No register control — t ₁ Start of sample LED2 pulse LED2STC(15:0), register 01h 6050 t ₂ End of sample LED2 pulse LED2ENDC(15:0), register 02h 7998 t ₃ Start of LED2 pulse LED2LEDSTC(15:0), register 03h 6000 t ₄ End of LED2 pulse LED2LEDSTC(15:0), register 04h 7999 t ₅ Start of sample LED2 ambient pulse ALED2STC(15:0), register 06h 1998 t ₅ Start of sample LED1 pulse LED1ENDC(15:0), register 06h 1998 t ₇ Start of sample LED1 pulse LED1ENDC(15:0), register 07h 2050 t ₈ End of sample LED1 pulse LED1ENDC(15:0), register 07h 2050 t ₈ End of LED1 pulse LED1ENDC(15:0), register 07h 3998 t ₉ Start of LED1 pulse LED1ENDC(15:0), register 08h 3998 t ₁₀ End of Sample LED1 ambient pulse ALED1ENDC(15:0), register 08h 4050 t ₁₂ End of sample LED2 ambient pulse ALED1ENDC(15:0), register 08h 4050 t ₁₃ Start of convert LED2 puls	TIME INSTANT (See Figure 48 and Figure 49) ⁽¹⁾	DESCRIPTION	CORRESPONDING REGISTER ADDRESS AND REGISTER BITS	EXAMPLE ⁽²⁾ (Decimal)
t ₂ End of sample LED2 pulse LED2ENDC[15:0], register 02h 7998 t ₃ Start of LED2 pulse LED2LEDSTC[15:0], register 03h 6000 t ₄ End of LED2 pulse LED2LEDENDC[15:0], register 04h 7999 t ₅ Start of sample LED2 ambient pulse ALED2STC[15:0], register 05h 50 t ₆ End of sample LED1 ambient pulse ALED2STC[15:0], register 06h 1998 t ₇ Start of sample LED1 pulse LED1STC[15:0], register 07h 2050 t ₈ End of sample LED1 pulse LED1STC[15:0], register 08h 3998 t ₉ Start of LED1 pulse LED1EDSTC[15:0], register 08h 3998 t ₁₀ End of LED1 pulse LED1LEDSTC[15:0], register 08h 3998 t ₁₁ Start of End of LED1 ambient pulse LED1LEDSTC[15:0], register 08h 4050 t ₁₂ End of Sample LED1 ambient pulse ALED1STC[15:0], register 0Ch 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh 4 Must stard of each sample LED1 ambient pulse LED2CONVST[15:0], register 0Dh 4 t ₁₅ Start of conve	t _o	Start of pulse repetition period	No register control	_
t ₃ Start of LED2 pulse LED2LEDSTC[15:0], register 03h 6000 t ₄ End of LED2 pulse LED2LEDENDC[15:0], register 04h 7999 t ₅ Start of sample LED2 ambient pulse ALED2STC[15:0], register 05h 50 t ₆ End of sample LED2 ambient pulse ALED2ENDC[15:0], register 06h 1998 t ₇ Start of sample LED1 pulse LED1STC[15:0], register 07h 2050 t ₈ End of sample LED1 pulse LED1ENDC[15:0], register 08h 3998 t ₉ Start of LED1 pulse LED1ENDC[15:0], register 08h 2000 t ₁₀ End of LED1 pulse LED1LEDENDC[15:0], register 0Ah 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 t ₁₂ End of sample LED1 ambient pulse ALED1STC[15:0], register 0Ch 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh 4 t ₁₄ End of convert LED2 pulse LED2CONVST[15:0], register 0Fh 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 16h 3999 t ₁₆	t ₁	Start of sample LED2 pulse	LED2STC[15:0], register 01h	6050
t ₄ End of LED2 pulse LED2LEDENDC(15:0), register 04h 7999 t ₅ Start of sample LED2 ambient pulse ALED2STC(15:0), register 05h 50 t ₆ End of sample LED2 ambient pulse ALED2ENDC(15:0), register 06h 1998 t ₇ Start of sample LED1 pulse LED1STC(15:0), register 07h 2050 t ₈ End of sample LED1 pulse LED1ENDC(15:0), register 08h 3998 t ₉ Start of LED1 pulse LED1EDENDC(15:0), register 09h 2000 t ₁₀ End of LED1 pulse LED1EDENDC(15:0), register 0Ah 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1STC(15:0), register 0Bh 4050 t ₁₂ End of sample LED1 ambient pulse ALED1ENDC(15:0), register 0Dh 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST(15:0), register 0Dh 4 t ₁₄ End of convert LED2 pulse LED2CONVST(15:0), register 0Fh 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST(15:0), register 0Fh 3999 t ₁₆ End of convert LED1 pulse ALED2CONVST(15:0), register 10h 3999 t ₁₇	t ₂	End of sample LED2 pulse	LED2ENDC[15:0], register 02h	7998
t ₅ Start of sample LED2 ambient pulse ALED2STC[15:0], register 05h 50 t ₆ End of sample LED2 ambient pulse ALED2ENDC[15:0], register 06h 1998 t ₇ Start of sample LED1 pulse LED1ENDC[15:0], register 07h 2050 t ₈ End of sample LED1 pulse LED1ENDC[15:0], register 08h 3998 t ₉ Start of LED1 pulse LED1EDDC[15:0], register 09h 2000 t ₁₀ End of LED1 pulse LED1LEDSTC[15:0], register 08h 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1EDDC[15:0], register 0Ah 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 t ₁₂ End of sample LED1 ambient pulse ALED1STC[15:0], register 0Ch 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Ch 5998 t ₁₄ End of convert LED2 pulse LED2CONVST[15:0], register 0Ch 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 t ₁₆ End of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 t ₁₇ Start of convert LED1 pulse ALED2CONVST[15:0], register 10h 1999 t ₁₇ Start of convert LED1 pulse ALED2CONVST[15:0], register 10h 1999 t ₁₈ Start of convert LED1 pulse ALED2CONVST[15:0], register 10h 1999 t ₁₉ Start of convert LED1 ambient pulse ALED2CONVST[15:0], register 11h 1999 t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 12h 1999 t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 12h 1999 t ₂₀ End of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 1900 t ₂₀ End of second ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 1900 t ₂₀ End of first ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18h 1900 t ₂₀ End of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 18h 1900 t ₂₀ End of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 18h 1900 t ₂₀ End of first ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 1900 t ₂₀ End of fourth ADC co	t ₃	Start of LED2 pulse	LED2LEDSTC[15:0], register 03h	6000
t6 End of sample LED2 ambient pulse ALEDZENDC[15:0], register 06h 1998 t7 Start of sample LED1 pulse LED1STC[15:0], register 07h 2050 t8 End of sample LED1 pulse LED1ENDC[15:0], register 08h 3998 t9 Start of LED1 pulse LED1LEDSTC[15:0], register 09h 2000 t10 End of LED1 pulse LED1LEDSTC[15:0], register 0Ah 3999 t11 Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 t12 End of sample LED1 ambient pulse ALED1ENDC[15:0], register 0Ch 5998 t13 Start of convert LED2 pulse LED2CONVST[15:0], register 0Ch 5998 t14 End of convert LED2 pulse LED2CONVST[15:0], register 0Ch 1999 t15 Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Fh 1999 t16 End of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Fh 2004 t17 Start of convert LED1 pulse LED1CONVST[15:0], register 10h 3999 t19 Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 10h 3999 t19	t ₄	End of LED2 pulse	LED2LEDENDC[15:0], register 04h	7999
ty Start of sample LED1 pulse LED1STC[15:0], register 07h 2050 t ₈ End of sample LED1 pulse LED1ENDC[15:0], register 08h 3998 t ₉ Start of LED1 pulse LED1LEDSTC[15:0], register 08h 2000 t ₁₀ End of LED1 pulse LED1LEDSTC[15:0], register 08h 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 t ₁₂ End of sample LED1 ambient pulse ALED1ENDC[15:0], register 0Ch 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh 4 Must start one AFE clock cycle after the ADC reset pulse ends. 4 t ₁₄ End of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Fh 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 10h 3999 t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 10h 3999 t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 11h 4004 t ₁₈ End of convert LED1 ambient pulse ALED1CONVEND[15:0], register 12h 5999 t ₁₉	t ₅	Start of sample LED2 ambient pulse	ALED2STC[15:0], register 05h	50
ts End of sample LED1 pulse LED1ENDC[15:0], register 08h 3998 ts Start of LED1 pulse LED1LEDSTC[15:0], register 09h 2000 ts End of LED1 pulse LED1LEDSTC[15:0], register 09h 2000 ts End of LED1 pulse LED1LEDENDC[15:0], register 0Ah 3999 ts Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 ts End of sample LED1 ambient pulse ALED1SNC[15:0], register 0Dh 5998 ts Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh 4 ts But of convert LED2 pulse LED2CONVST[15:0], register 0Bh 1999 ts Start of convert LED2 pulse LED2CONVST[15:0], register 0Bh 1999 ts Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Bh 1999 ts Start of convert LED1 pulse LED1CONVST[15:0], register 10h 3999 ts Start of convert LED1 pulse LED1CONVST[15:0], register 11h 4004 ts But of convert LED1 ambient pulse LED1CONVST[15:0], register 12h 5999 ts Start of irist	t ₆	End of sample LED2 ambient pulse	ALED2ENDC[15:0], register 06h	1998
t ₉ Start of LED1 pulse LED1LEDSTC[15:0], register 09h 2000 t ₁₀ End of LED1 pulse LED1 ambient pulse LED1LEDENDC[15:0], register 0Ah 3999 t ₁₁ Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 t ₁₂ End of sample LED1 ambient pulse ALED1ENDC[15:0], register 0Bh 4050 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh 4000 LED2CONVST[15:0], register 10Dh 4000 LED2CONVST[15:0], register 10Dh 4000 LED2CONVST[15:0], register 10Dh 4000 LED2CONVST[15:0], register 10Dh 4000 LED2CONVST[15:0], register 11Dh 4000 LED1CONVST[15:0], register 12Dh 4000 LED1CONVST[15:0], register 12Dh 4000 LED1CONVST[15:0], register 12Dh 4000 LED1CONVST[15:0], register 15Dh 4000	t ₇	Start of sample LED1 pulse	LED1STC[15:0], register 07h	2050
tito End of LED1 pulse LED1ambient pulse ALED1STC[15:0], register 0Ah 3999 tit Start of sample LED1 ambient pulse ALED1STC[15:0], register 0Bh 4050 tit End of sample LED1 ambient pulse ALED1STC[15:0], register 0Ch 5998 tit Start of convert LED2 pulse LED2CONVST[15:0], register 0Ch 4 tit End of convert LED2 pulse LED2CONVST[15:0], register 0Ch 4 tit End of convert LED2 pulse LED2CONVST[15:0], register 0Ch 1999 tit Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 tit Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 tit End of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Ch 1999 tit End of convert LED2 ambient pulse ALED2CONVST[15:0], register 10Ch 1999 tit End of convert LED1 pulse ALED2CONVST[15:0], register 11Ch 10Ch 1999 tit End of convert LED1 pulse LED1CONVST[15:0], register 11Ch 10Ch 1999 tit End of convert LED1 pulse LED1CONVST[15:0], register 11Ch 10Ch 1999 tit End of convert LED1 ambient pulse ALED1CONVST[15:0], register 12Ch 1999 tit Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 12Ch 1999 tit Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13Ch 1999 tit Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 14Ch 1999 tit Start of second ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15Ch 1999 tit End of first ADC conversion reset pulse ADCRSTSTCT1[15:0], register 16Ch 1999 tit End of third ADC conversion reset pulse ADCRSTSTCT1[15:0], register 15Ch 1999 tit End of third ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18Ch 1999 tit End of third ADC conversion reset pulse ADCRSTSTCT1[15:0], register 19Ch 1990 tit End of foruth ADC conversion reset pulse ADCRSTSTCT1[15:0], register 19Ch 1990 tit End of foruth ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18Ch 1990 tit End of foruth ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18Ch 1990 tit End of foruth ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18Ch 1990 tit End of foruth ADC co	t ₈	End of sample LED1 pulse	LED1ENDC[15:0], register 08h	3998
till Start of sample LED1 ambient pulse ALED1STC[15:0], register OBh 4050 till End of sample LED1 ambient pulse ALED1ENDC[15:0], register OCh 5998 till Start of convert LED2 pulse LED2CONVST[15:0], register ODh Must start one AFE clock cycle after the ADC reset pulse ends. 4 till End of convert LED2 pulse LED2CONVST[15:0], register OBh Must start one AFE clock cycle after the ADC reset pulse ends. 4 till End of convert LED2 ambient pulse ALED2CONVST[15:0], register OBh Must start one AFE clock cycle after the ADC reset pulse ends. 2004 till End of convert LED2 ambient pulse ALED2CONVST[15:0], register 10h 3999 till Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 till End of convert LED1 pulse LED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 6004 till End of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 6004 till Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 6004 till Start of convert LED1 ambient pulse ALED1CONVEND[15:0], register 14h 7999 till Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 0 till Start of second ADC conversion reset pulse ADCRSTSTCT0[15:0], register 16h 3 till Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 till End of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18h 2003 till End of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 18h 4000 till End of second ADC conversion reset pulse ADCRSTSTCT2[15:0], register 18h 4000 till End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 4000 till End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 4000 till End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 16h 4000 till End of fourth ADC conversion reset pu	t ₉	Start of LED1 pulse	LED1LEDSTC[15:0], register 09h	2000
t ₁₂ End of sample LED1 ambient pulse ALED1ENDC[15:0], register OCh 5998 t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register ODh Must start one AFE clock cycle after the ADC reset pulse ends. 4 t ₁₄ End of convert LED2 pulse LED2CONVEND[15:0], register OBh Must start one AFE clock cycle after the ADC reset pulse ends. 2004 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVEND[15:0], register OBh Must start one AFE clock cycle after the ADC reset pulse ends. 2004 t ₁₆ End of convert LED2 ambient pulse ALED2CONVEND[15:0], register 10h 3999 t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 t ₁₈ End of convert LED1 pulse LED1CONVSD[15:0], register 12h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 t ₁₈ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 6004 t ₂₀ End of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 6004 t ₂₀ End of convert LED1 ambient pulse ALED1CONVSD[15:0], register 14h 7999 t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT[15:0], register 15h 0 t ₂₂ End of first ADC conversion reset pulse ADCRSTSTCT[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT[15:0], register 18h 2003 t ₂₆ Start of third ADC conversion reset pulse ADCRSTSTCT[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTSTCT[15:0], register 18h 6000 t ₂₆ End of fourth ADC conversion reset pulse ADCRSTSTCT[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCD[15:0], register 1Bh 6000	t ₁₀	End of LED1 pulse	LED1LEDENDC[15:0], register 0Ah	3999
t ₁₃ Start of convert LED2 pulse LED2CONVST[15:0], register 0Dh Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₄ End of convert LED2 pulse LED2CONVEND[15:0], register 0Eh 1999 t ₁₅ Start of convert LED2 ambient pulse ALED2CONVEND[15:0], register 0Fh Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₆ End of convert LED2 ambient pulse ALED2CONVEND[15:0], register 10h 3999 t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₈ End of convert LED1 pulse LED1CONVEND[15:0], register 12h 5999 t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. t ₂₀ End of convert LED1 ambient pulse ALED1CONVST[15:0], register 14h 7999 t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 14h 7999 t ₂₂ End of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 6000 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 6000	t ₁₁	Start of sample LED1 ambient pulse	ALED1STC[15:0], register 0Bh	4050
til End of convert LED2 pulse Must start one AFE clock cycle after the ADC reset pulse ends. til End of convert LED2 pulse LED2CONVEND[15:0], register 0Eh ALED2CONVST[15:0], register 0Fh Must start one AFE clock cycle after the ADC reset pulse ends. ALED2CONVST[15:0], register 10H Must start one AFE clock cycle after the ADC reset pulse ends. ALED2CONVST[15:0], register 10h Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 til End of convert LED1 pulse LED1CONVEND[15:0], register 12h Start of convert LED1 ambient pulse LED1CONVST[15:0], register 12h Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 til Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. 4004 ALED1CONVST[15:0], register 15h 5004 ALED1CONVEND[15:0], register 14h 7999 til Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 16h 3 attriance and a start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 til End of second ADC conversion reset pulse ADCRSTSTCT2[15:0], register 18h 2003 til Start of firith ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 til End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 4000 4000 ADCRSTENDCT3[15:0], register 16h 4000 ADCRSTSTCT3[15:0], register 18h 4000 ADCRSTSTCT3[15:0], register 18h 4000 ADCRSTSTCT3[15:0], register 18h 4000 ADCRSTSTCT3[15:0], register 16h 4000 ADCRSTSTCT3[15:0], regi	t ₁₂	End of sample LED1 ambient pulse	ALED1ENDC[15:0], register 0Ch	5998
t ₁₅ Start of convert LED2 ambient pulse ALED2CONVST[15:0], register 0Fh Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₆ End of convert LED2 ambient pulse ALED2CONVEND[15:0], register 10h 3999 t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₈ End of convert LED1 pulse LED1CONVEND[15:0], register 12h 5999 t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. t ₂₀ End of convert LED1 ambient pulse ALED1CONVEND[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. t ₂₀ End of convert LED1 ambient pulse ALED1CONVEND[15:0], register 14h 7999 t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 0 t ₂₂ End of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000	t ₁₃	Start of convert LED2 pulse	1, 0	4
tis Start of convert LED2 ambient pulse Must start one AFE clock cycle after the ADC reset pulse ends. tis End of convert LED1 pulse ALED2CONVEND[15:0], register 10h 3999 tis Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. tis End of convert LED1 pulse LED1CONVEND[15:0], register 12h 5999 tis Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. tis End of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. tis End of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. tis ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. tis ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. tis ALED1CONVST[15:0], register 14h 7999 tis ALED1CONVST[15:0], register 15h 0 ADCRSTSTCT0[15:0], register 16h 3 ADCRSTSTCT0[15:0], register 16h 3 tis Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 tis ADCRSTSTCT1[15:0], register 17h 2000 tis ADCRSTSTCT1[15:0], register 18h 2003 tis ADCRSTSTCT2[15:0], register 19h 4000 tis ADCRSTSTCT2[15:0], register 14h 4003 tis ADCRSTSTCT3[15:0], register 14h 4003 ADCRSTSTCT3[15:0], register 15h 6000 tis ADCRSTSTCT3[15:0], register 15h 6000 tis ADCRSTSTCT3[15:0], register 15h 6000 tis ADCRSTSTCT3[15:0], register 15h 60000 ADCRSTSTCT3[15:0], register 15h 600000 ADCRSTSTCT3[15:0], register 15h 6000000000000000000000000000000000000	t ₁₄	End of convert LED2 pulse	LED2CONVEND[15:0], register 0Eh	1999
t ₁₇ Start of convert LED1 pulse LED1CONVST[15:0], register 11h Must start one AFE clock cycle after the ADC reset pulse ends. t ₁₈ End of convert LED1 pulse LED1CONVEND[15:0], register 12h 5999 t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. t ₂₀ End of convert LED1 ambient pulse ALED1CONVEND[15:0], register 14h 7999 t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 0 t ₂₂ End of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset ADCRSTSTCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Ah 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Ch 6003	t ₁₅	Start of convert LED2 ambient pulse		2004
tito from the tension of the tension	t ₁₆	End of convert LED2 ambient pulse	ALED2CONVEND[15:0], register 10h	3999
t ₁₉ Start of convert LED1 ambient pulse ALED1CONVST[15:0], register 13h Must start one AFE clock cycle after the ADC reset pulse ends. t ₂₀ End of convert LED1 ambient pulse ALED1CONVEND[15:0], register 14h 7999 t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 0 t ₂₂ End of first ADC conversion reset pulse ADCRSTENDCT0[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset pulse ADCRSTENDCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTENDCT2[15:0], register 1Ah 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse (3) ADCRSTENDCT3[15:0], register 1Ch 6003	t ₁₇	Start of convert LED1 pulse		4004
to the first ADC conversion reset pulse to Start of second ADC conversion reset pulse to End of second ADC conversion reset pulse ADCRSTENDCT0[15:0], register 16h to End of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h End of second ADC conversion reset pulse ADCRSTENDCT1[15:0], register 18h 2003 to End of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 to End of third ADC conversion reset pulse ADCRSTENDCT2[15:0], register 19h 4000 to End of third ADC conversion reset pulse ADCRSTENDCT2[15:0], register 18h 4003 to End of third ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h 4003 to End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h ADCRSTSTCT3[15:0], register 18h ADCRSTSTCT3[15:0], register 18h End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h ADCRSTSTCT3[15:0], register 18h End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 18h ADCRSTSTCT3[15:0], register 18h End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 10h	t ₁₈	End of convert LED1 pulse	LED1CONVEND[15:0], register 12h	5999
t ₂₁ Start of first ADC conversion reset pulse ADCRSTSTCT0[15:0], register 15h 0 t ₂₂ End of first ADC conversion reset pulse (3) ADCRSTENDCT0[15:0], register 16h 3 t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset pulse ADCRSTENDCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse (3) ADCRSTENDCT2[15:0], register 19h 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse (3) ADCRSTENDCT3[15:0], register 1Ch 6003	t ₁₉	Start of convert LED1 ambient pulse		6004
t ₂₂ End of first ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT0[15:0], register 16h t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h t ₂₄ End of second ADC conversion reset pulse ADCRSTENDCT1[15:0], register 18h t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h t ₂₆ End of third ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT2[15:0], register 19h t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT2[15:0], register 1Bh t ₂₈ End of fourth ADC conversion reset pulse ⁽³⁾ ADCRSTSTCT3[15:0], register 1Ch 6003	t ₂₀	End of convert LED1 ambient pulse	ALED1CONVEND[15:0], register 14h	7999
t ₂₃ Start of second ADC conversion reset pulse ADCRSTSTCT1[15:0], register 17h 2000 t ₂₄ End of second ADC conversion reset pulse ADCRSTENDCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTENDCT2[15:0], register 1Ah 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Ch 6003	t ₂₁	Start of first ADC conversion reset pulse	ADCRSTSTCT0[15:0], register 15h	0
t ₂₄ End of second ADC conversion reset ADCRSTENDCT1[15:0], register 18h 2003 t ₂₅ Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t ₂₆ End of third ADC conversion reset pulse ADCRSTENDCT2[15:0], register 1Ah 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Ch 6003	t ₂₂	End of first ADC conversion reset pulse (3)	ADCRSTENDCT0[15:0], register 16h	3
t24 pulse (3) ADCRSTENDCT1[15:0], register 18h 2003 t25 Start of third ADC conversion reset pulse ADCRSTSTCT2[15:0], register 19h 4000 t26 End of third ADC conversion reset pulse (3) ADCRSTENDCT2[15:0], register 1Ah 4003 t27 Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t28 End of fourth ADC conversion reset pulse (3) ADCRSTENDCT3[15:0], register 1Ch 6003	t ₂₃	Start of second ADC conversion reset pulse	ADCRSTSTCT1[15:0], register 17h	2000
t ₂₆ End of third ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT2[15:0], register 1Ah 4003 t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT3[15:0], register 1Ch 6003	t ₂₄		ADCRSTENDCT1[15:0], register 18h	2003
t ₂₇ Start of fourth ADC conversion reset pulse ADCRSTSTCT3[15:0], register 1Bh 6000 t ₂₈ End of fourth ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT3[15:0], register 1Ch 6003	t ₂₅	Start of third ADC conversion reset pulse	ADCRSTSTCT2[15:0], register 19h	4000
t ₂₈ End of fourth ADC conversion reset pulse ⁽³⁾ ADCRSTENDCT3[15:0], register 1Ch 6003	t ₂₆	End of third ADC conversion reset pulse (3)	ADCRSTENDCT2[15:0], register 1Ah	4003
	t ₂₇	Start of fourth ADC conversion reset pulse	ADCRSTSTCT3[15:0], register 1Bh	6000
t ₂₉ End of pulse repetition period PRPCOUNT[15:0], register 1Dh 7999	t ₂₈	End of fourth ADC conversion reset pulse (3)	ADCRSTENDCT3[15:0], register 1Ch	6003
	t ₂₉	End of pulse repetition period	PRPCOUNT[15:0], register 1Dh	7999

⁽¹⁾ Any pulse can be set to zero width by making its start value higher than the end value.

⁽²⁾ Values are based off of a pulse repetition frequency (PRF) = 500 Hz and duty cycle = 25%.

⁽³⁾ See Figure 49, note 2 for the effect of the ADC reset time crosstalk.



⁽¹⁾ RED = LED2, IR = LED1.

Figure 48. Programmable Clock Edges⁽¹⁾⁽²⁾

⁽²⁾ A low ADC reset time can result in a small component of the LED signal leaking into the ambient phase. With an ADC reset of two clock cycles, a -60-dB leakage is expected. In many cases, this leakage does not affect system performance. However, if this crosstalk must be completely eliminated, a longer ADC reset time of approximately six clock cycles is recommended for t_{22} , t_{24} , t_{26} , and t_{28} .

⁽¹⁾ RED = LED2, IR = LED1.

Figure 49. Relationship Between the ADC Reset and ADC Conversion Signals⁽¹⁾⁽²⁾

⁽²⁾ A low ADC reset time can result in a small component of the LED signal leaking into the ambient phase. With an ADC reset of two clock cycles, a -60-dB leakage is expected. In many cases, this leakage does not affect system performance. However, if this crosstalk must be completely eliminated, a longer ADC reset time of approximately six clock cycles is recommended for t_{22} , t_{24} , t_{26} , and t_{28} .

8.3.4 Receiver Subsystem Power Path

The block diagram in Figure 50 shows the AFE4403 Rx subsystem power routing. Internal LDOs running off RX_ANA_SUP and RX_DIG_SUP generate the 1.8-V supplies required to drive the internal blocks. The two receive supplies could be shorted to a single supply on the board.

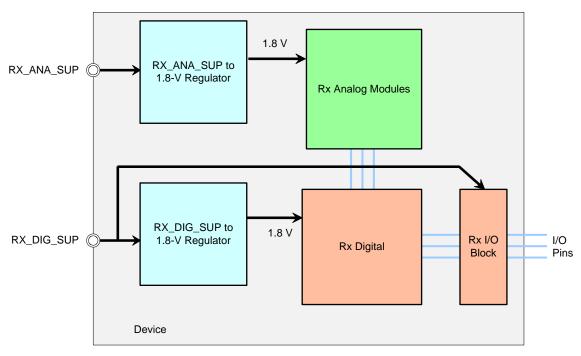


Figure 50. Receive Subsystem Power Routing

8.3.5 Transmit Section

The transmit section integrates the LED driver and the LED current control section with 8-bit resolution.

The RED and IR LED reference currents can be independently set. The current source (I_{LED}) locally regulates and ensures that the actual LED current tracks the specified reference. The transmitter section uses an internal 0.25-V reference voltage for operation. This reference voltage is available on the TX_REF pin and must be decoupled to ground with a 2.2-µF capacitor. The TX_REF voltage is derived from the TX_CTRL_SUP. The TX_REF voltage can be programmed from 0.25 V to 1 V. A lower TX_REF voltage allows a lower voltage to be supported on LED_DRV_SUP. However, the transmitter dynamic range falls in proportion to the voltage on TX_REF. Thus, a TX_REF setting of 0.5 V gives a 6-dB lower transmitter dynamic range as compared to a 1-V setting on TX_REF, and a 6-dB higher transmitter dynamic range as compared to a 0.25-V setting on TX_REF.

Note that reducing the value of the band-gap reference capacitor on the BG pin reduces the time required for the device to wake-up and settle. However, this reduction in time is a trade-off between wake-up time and noise performance. For example, reducing the value of the capacitors on the BG and TX_REF pins from 2.2 uF to 0.1 uF reduces the wake-up time (from complete power-down) from 1000 ms to 100 ms, but results in a few decibels of degradation in the transmitter dynamic range.

The minimum LED_DRV_SUP voltage required for operation depends on:

- Voltage drop across the LED (V_{LED}),
- Voltage drop across the external cable, connector, and any other component in series with the LED (V_{CABLE}), and
- Transmitter reference voltage.

See the Recommended Operating Conditions table for further details.

Two LED driver schemes are supported:

- An H-bridge drive for a two-terminal back-to-back LED package; see Figure 51.
- A push-pull drive for a three-terminal LED package; see Figure 52.

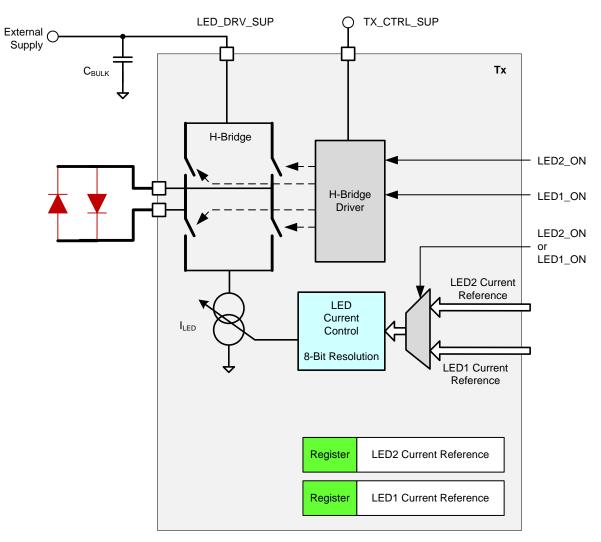


Figure 51. Transmit: H-Bridge Drive

37

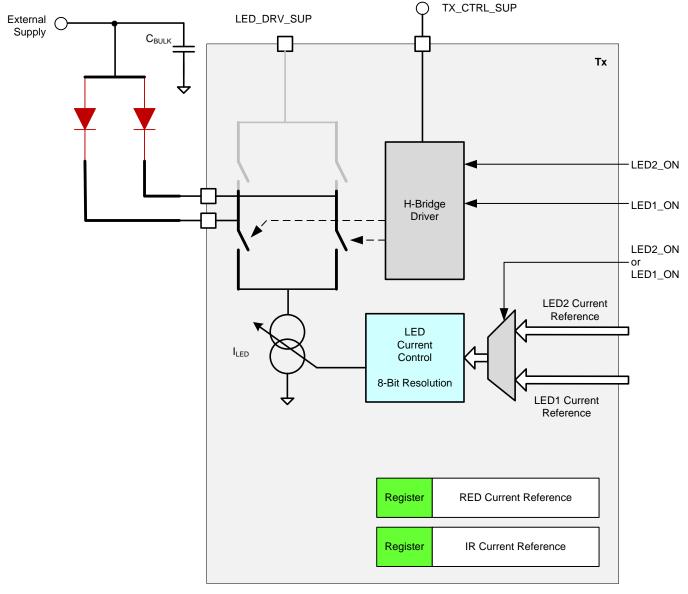


Figure 52. Transmit: Push-Pull LED Drive for Common Anode LED Configuration

8.3.5.1 Third LED Support

A third LED can be optionally connected on the TX3 pin, as shown in Figure 53. An example application involving a third LED is where the Red and IR LEDs are connected on the TXP, TXN pins for pulse oximeter applications and a third LED (for example a Green LED) is connected on the TX3 pin for a heart rate monitoring application. The third LED can be connected only in common anode configuration. By programming the TX3_MODE register bit, the timing engine controls on TXP can be transferred to the TX3 pin. In this mode, the register bits that indicate the diagnostic results on the TXP pin now indicate the diagnostic results on the TX3 pin. The selection between using TX3 versus using TXP, TXN is intended as a static mode selection as opposed to a dynamic switching selection. A typical time delay of approximately 20 ms is required for the receive channel to settle after a change to the TX3_MODE setting. During this transition time, the receive signal chain should be active so that the filters are able to settle to the new signal level from the third LED.

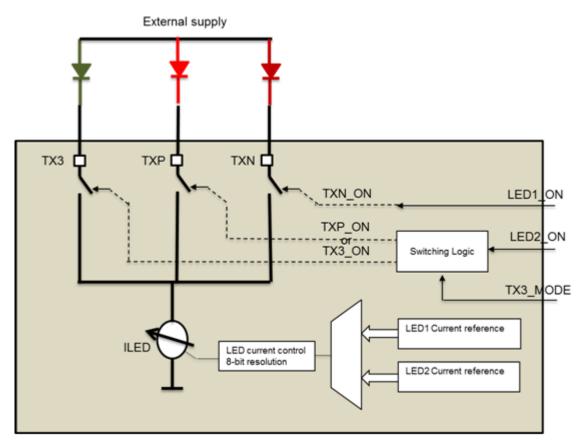


Figure 53. Multiplexing Third LED

8.3.5.2 Transmitter Power Path

The block diagram in Figure 54 shows the AFE4403 Tx subsystem power routing.

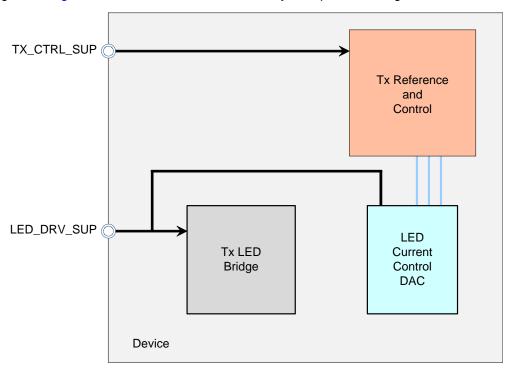


Figure 54. Transmit Subsystem Power Routing

8.3.5.3 LED Power Reduction During Periods of Inactivity

The diagram in Figure 55 shows how LED bias current passes 50 μ A whenever LED_ON occurs. In order to minimize power consumption in periods of inactivity, the LED_ON control must be turned off. Furthermore, the TIMEREN bit in the CONTROL1 register should be disabled by setting the value to 0.

Note that depending on the LEDs used, the LED may sometimes appear dimly lit even when the LED current is set to 0 mA. This appearance is because of the switching leakage currents (as shown in Figure 55) inherent to the timer function. The dimmed appearance does not effect the ambient light level measurement because during the ambient cycle, LED_ON is turned off for the duration of the ambient measurement.

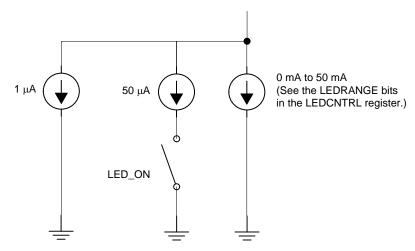


Figure 55. LED Bias Current

8.3.5.4 LED Configurations

Multiple LED configurations are possible with the AFE4403.

Case 1: Red, IR LEDs in the common anode configuration for SPO2 and a Green LED for the HRM. Figure 56 shows the common anode configuration for this case. Figure 57 shows the configuration for HRM mode.

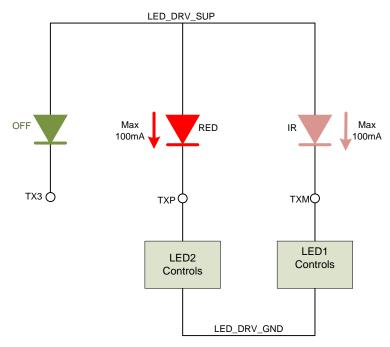


Figure 56. SPO2 Application, Common Anode Configuration

HRM mode: Set TX3_MODE = 1.

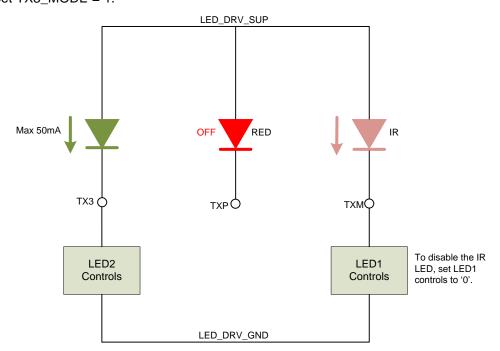


Figure 57. HRM Application Using the Third LED (Optional use of the IR LED)

Case 2: Red, IR LEDs in an H-bridge configuration for SPO2 and a Green LED for the HRM. The H-bridge configuration for this case is shown in Figure 58. Figure 59 shows the configuration for HRM mode.

SPO2 mode: Set $TX3_MODE = 0$.

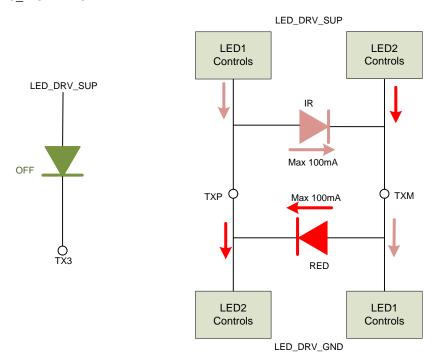


Figure 58. SPO2 Application, H-Bridge Configuration

HRM mode: Set TX3_MODE = 1.

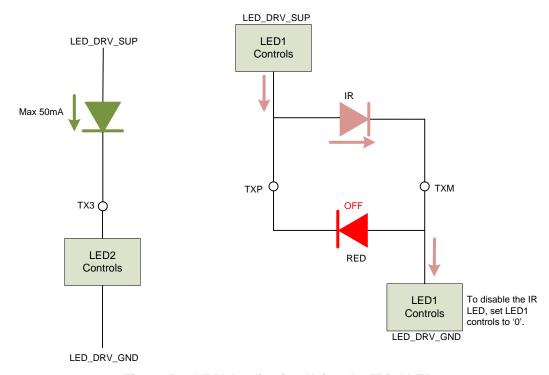


Figure 59. HRM Application Using the Third LED

Case 3: Driving two LEDs simultaneously for HRM.

Some sensor modules have two LEDs on either side of the photodiode to make the illumination more uniform. The two LEDs can be connected in parallel, as shown in Figure 60.

The connection shown in Figure 60 results in an equal split of the current between the two LEDs if their forward voltages are exactly matched. High mismatch in the forward voltages of the two LEDs can cause one of them to consume the majority of the current.

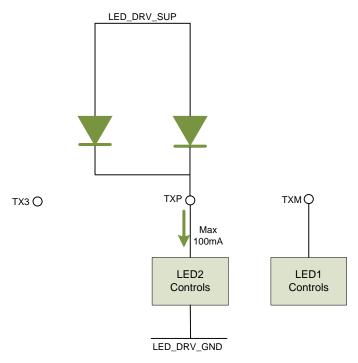


Figure 60. Using Two Parallel LEDs for an HRM Application

Case 4: Driving two LEDs separated in time for HRM.

The two LEDs can also be driven as shown in Figure 61.

While this mode of driving the two LEDs does not drive them simultaneously, there are two advantages in this case. First, the full current is available for driving each LED. Secondly, the mismatch in the forward voltages between the two LEDs does not play a role.

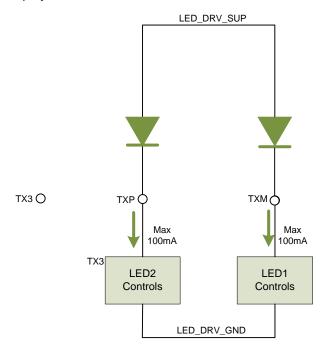


Figure 61. Using Two Parallel LEDs for an HRM Application with Separation in Timing

8.4 Device Functional Modes

8.4.1 ADC Operation and Averaging Module

After the falling edge of the ADC reset signal, the ADC conversion phase starts (refer to Figure 49). Each ADC conversion takes 50 µs.

The ADC operates with averaging. The averaging module averages multiple ADC samples and reduces noise to improve dynamic range. Figure 62 shows a diagram of the averaging module. The ADC output is a 22-bit code that is obtained by discarding the two MSBs of the 24-bit registers (for example the register with address 2Ah), as shown in Figure 63.

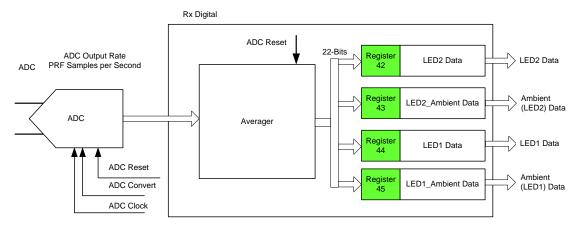


Figure 62. Averaging Module

Figure 63. 22-Bit Word

23	22	21	20	19	18	17	16	15	14	13	12
Ign	ore				22-	Bit ADC Cod	de, MSB to l	_SB			
11	10	9	8	7	6	5	4	3	2	1	0
				22-	Bit ADC Coo	de, MSB to	LSB				

Table 3 shows the mapping of the input voltage to the ADC to its output code.

Table 3. ADC Input Voltage Mapping

DIFFERENTIAL INPUT VOLTAGE AT ADC INPUT	22-BIT ADC OUTPUT CODE
-1.2 V	10000000000000000000
(-1.2 / 2 ²¹) V	11111111111111111111
0	00000000000000000000
(1.2 / 2 ²¹) V	00000000000000000001
1.2 V	01111111111111111111

The data format is binary twos complement format, MSB-first. Because the TIA has a full-scale range of ±1 V, TI recommends that the input to the ADC does not exceed ±1 V, which is approximately 80% of its full-scale.

In cases where having the processor read the data as a 24-bit word instead of a 22-bit word is more convenient, the entire register can be mapped to the input level as shown in Figure 64.

Figure 64. 24-Bit Word

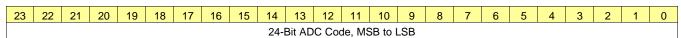


Table 4 shows the mapping of the input voltage to the ADC to its output code when the entire 24-bit word is considered.

Table 4. Input Voltage Mapping

DIFFERENTIAL INPUT VOLTAGE AT ADC INPUT	24-BIT ADC OUTPUT CODE
–1.2 V	111000000000000000000000000000000000000
(-1.2 / 2 ²¹) V	11111111111111111111111
0	000000000000000000000000000000000000000
(1.2 / 2 ²¹) V	000000000000000000000000000000000000000
1.2 V	000111111111111111111111111111111111111

Now the data can be considered as a 24-bit data in binary twos complement format, MSB-first. The advantage of using the entire 24-bit word is that the ADC output is correct, even when the input is over the normal operating range.

8.4.1.1 Operation Without Averaging

In this mode, the ADC outputs a digital sample one time for every 50 μ s. Consider a case where the ADC_RDY signals are positioned at 25%, 50%, 75%, and 100% points in the pulse repetition period. At the next rising edge of the ADC reset signal, the first 22-bit conversion value is written into the result registers sequentially as follows (see Figure 65):

- At the 25% reset signal, the first 22-bit ADC sample is written to register 2Ah.
- At the 50% reset signal, the first 22-bit ADC sample is written to register 2Bh.
- At the 75% reset signal, the first 22-bit ADC sample is written to register 2Ch.
- At the next 0% reset signal, the first 22-bit ADC sample is written to register 2Dh. The contents of registers 2Ah and 2Bh are written to register 2Eh and the contents of registers 2Ch and 2Dh are written to register 2Fh.

At the rising edge of the ADC RDY signal, the contents of all six result registers can be read out.

8.4.1.2 Operation With Averaging

In this mode, all ADC digital samples are accumulated and averaged after every 50 μ s. At the next rising edge of the ADC reset signal, the average value (22-bit) is written into the output registers sequentially, as follows (see Figure 66):

- At the 25% reset signal, the averaged 22-bit word is written to register 2Ah.
- At the 50% reset signal, the averaged 22-bit word is written to register 2Bh.
- At the 75% reset signal, the averaged 22-bit word is written to register 2Ch.
- At the next 0% reset signal, the averaged 22-bit word is written to register 2Dh. The contents of registers 2Ah and 2Bh are written to register 2Eh and the contents of registers 2Ch and 2Dh are written to register 2Fh.

At the rising edge of the ADC_RDY signal, the contents of all six result registers can be read out.

The number of samples to be used per conversion phase is specified in the CONTROL1 register (NUMAV[7:0]). The user must specify the correct value for the number of averages, as described in Equation 6:

NUMAV[7:0] + 1 =
$$\left[\frac{0.25 \times \text{Pulse Repetition Period}}{50 \, \mu \text{s}} \right] - 1$$
 (6)

Note that the 50-µs factor corresponds to a case where the internal clock of the AFE (after division) is exactly equal to 4 MHz. The factor scales linearly with the clock period being used.

When the number of averages is 0, the averaging is disabled and only one ADC sample is written to the result registers.

Note that the number of average conversions is limited by 25% of the PRF. For example, eight samples can be averaged with PRF = 625 Hz, and four samples can be averaged with PRF = 1250 Hz.

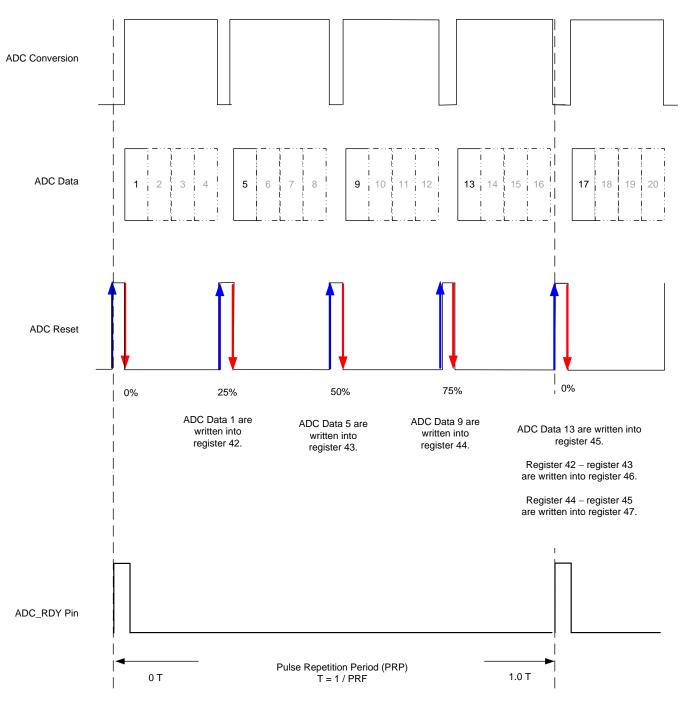
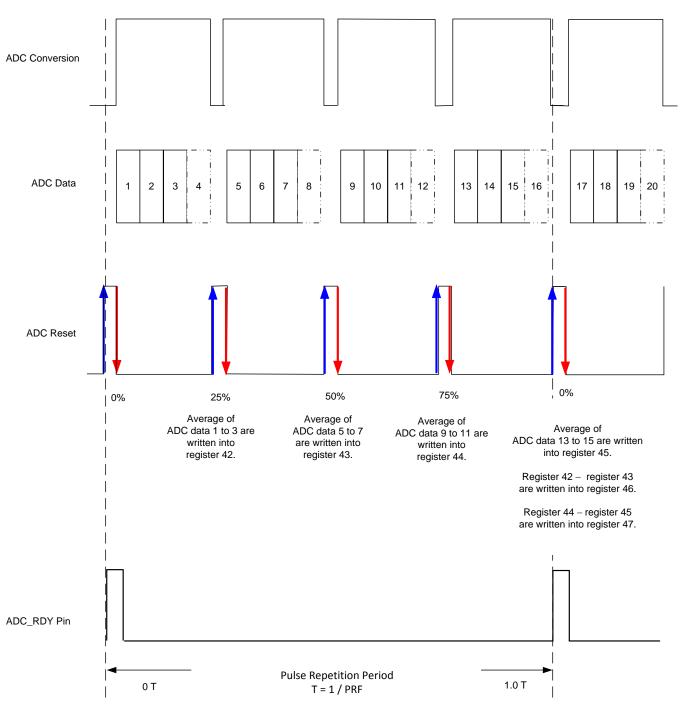



Figure 65. ADC Data Without Averaging (When Number of Averages = 0)

NOTE: Example is with three averages. The value of the NUMAVG[7:0] register bits = 2.

Figure 66. ADC Data with Averaging Enabled

8.4.1.3 Dynamic Power-Down Mode

When operated at low PRF, a dynamic power-down mode can be optionally enabled to shut off blocks during a portion of each period. This operation is illustrated in Figure 67. The dynamic power-down signal (called PDN_CYCLE) can be internally generated using the timing controller. PDN_CYCLE can be used to shut off power to internal blocks during the unused section within each pulse repetition period.

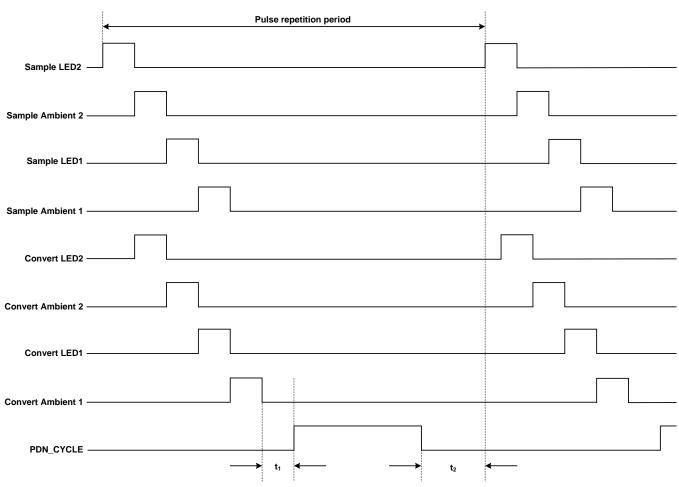


Figure 67. Dynamic Power-Down Mode Timing

 t_1 and t_2 denote the timing margin between the active portion of the period and the dynamic power-down signal. TI recommends setting $t_1 > 50$ µs and $t_2 > 200$ µs in order to ensure sufficient time for the shutdown blocks to recover from power-down. By choosing the blocks that are shut down during dynamic power-down, a power savings of anywhere between 35% to 70% power can be achieved when the PDN_CYCLE phase is active.

The sequence of the convert phases within a pulse repetition period should be as follows: LED2 (Red) \rightarrow Ambient 2 \rightarrow LED1 (IR) \rightarrow Ambient 1. The sample phases must precede the corresponding convert phase. Also note that the ADC_RDY signal comes at the beginning of the pulse repetition period. Thus, the contents of the registers must be read before the completion of the first conversion phase in the pulse repetition period. These contents correspond to the samples of the four phases from the previous pulse repetition period.

The DYNAMIC1, DYNAMIC2, DYNAMIC3, and DYNAMIC4 bits determine which blocks are powered down during the dynamic power-down state (when PDN_CYCLE is high). For maximum power saving, all four bits can be set to 1. TI recommends setting t_1 to greater than 100 μ s and t_2 to greater than 200 μ s to ensure that the blocks recover from power-down in time for the next cycle.

The bit corresponding to the TIA power-down (DYNAMIC3) needs a bit more consideration. When the TIA is powered down, the TIA no longer maintains the bias across the photodiode output. This loss of bias can cause the photodiode output voltage to drift from the normal value. The recovery time constant associated with the photodiode returning to a proper bias condition (when the TIA is powered back on) is approximately equal to 2 \times C_{PD} \times R_F, where C_{PD} is the effective differential capacitance of the photodiode and R_F is the TIA gain setting. This consideration might result in a different choice for the value of t_2 .

8.4.2 Diagnostics

The device includes diagnostics to detect open or short conditions of the LED and photosensor, LED current profile feedback, and cable on or off detection.

8.4.2.1 Photodiode-Side Fault Detection

Figure 68 shows the diagnostic for the photodiode-side fault detection.

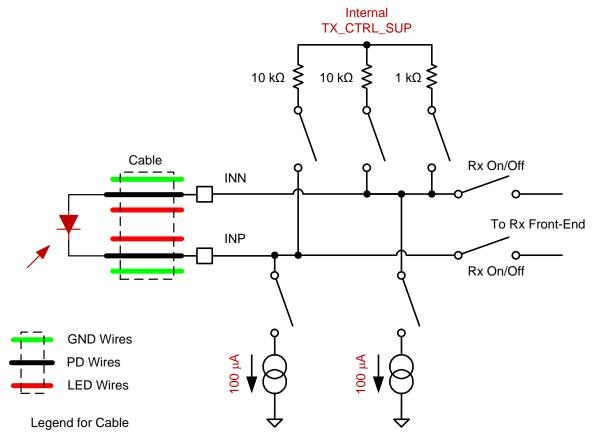


Figure 68. Photodiode Diagnostic

8.4.2.2 Transmitter-Side Fault Detection

Figure 69 shows the diagnostic for the transmitter-side fault detection.

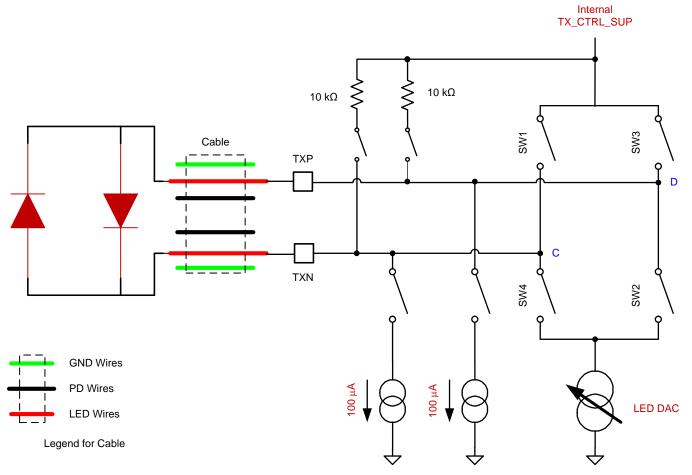


Figure 69. Transmitter Diagnostic

TEXAS INSTRUMENTS

8.4.2.3 Diagnostics Module

The diagnostics module, when enabled, checks for nine types of faults sequentially. The results of all faults are latched in 11 separate flags.

The status of all flags can also be read using the SPI interface. Table 5 details each fault and flag used. Note that the diagnostics module requires all AFE blocks to be enabled in order to function reliably.

Table 5. Fault and Flag Diagnostics⁽¹⁾

MODULE	SEQ.	FAULT	FLAG1	FLAG2	FLAG3	FLAG4	FLAG5	FLAG6	FLAG7	FLAG8	FLAG9	FLAG10	FLAG11
_	_	No fault	0	0	0	0	0	0	0	0	0	0	0
	1	Rx INP cable shorted to LED cable	1										
	2	Rx INN cable shorted to LED cable		1									
PD	3	Rx INP cable shorted to GND cable			1								
	4	Rx INN cable shorted to GND cable				1							
	5	PD open or shorted					1	1					
	6	Tx OUTM line shorted to GND cable							1				
LED	7	Tx OUTP line shorted to GND cable								1			
	8	LED open or shorted									1	1	
	9	LED open or shorted											1

⁽¹⁾ Resistances below 10 $k\Omega$ are considered to be shorted.

Figure 70 shows the timing for the diagnostic function.

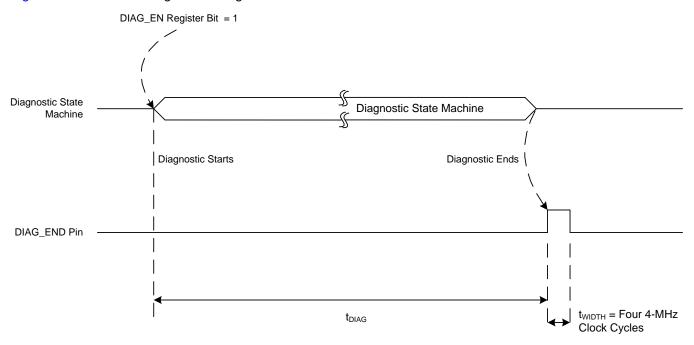


Figure 70. Diagnostic Timing Diagram

By default, the diagnostic function takes $t_{DIAG} = 16$ ms to complete. After the diagnostics function completes, the AFE4403 filter must be allowed time to settle. See the *Electrical Characteristics* for the filter settling time.

8.5 Programming

8.5.1 Serial Programming Interface

The SPI-compatible serial interface consists of four signals: SCLK (serial clock), SPISOMI (serial interface data output), SPISIMO (serial interface data input), and SPISTE (serial interface enable).

The serial clock (SCLK) is the serial peripheral interface (SPI) serial clock. SCLK shifts in commands and shifts out data from the device. SCLK features a Schmitt-triggered input and clocks data out on the SPISOMI. Data are clocked in on the SPISIMO pin. Even though the input has hysteresis, TI recommends keeping SCLK as clean as possible to prevent glitches from accidentally shifting the data. When the serial interface is idle, hold SCLK low

The SPI serial out master in (SPISOMI) pin is used with SCLK to clock out the AFE4403 data. The SPI serial in master out (SPISIMO) pin is used with SCLK to clock in data to the AFE4403. The SPI serial interface enable (SPISTE) pin enables the serial interface to clock data on the SPISIMO pin in to the device.

8.5.2 Reading and Writing Data

The device has a set of internal registers that can be accessed by the serial programming interface formed by the SPISTE, SCLK, SPISIMO, and SPISOMI pins.

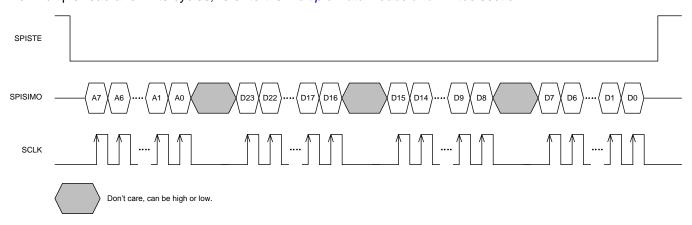
8.5.2.1 Writing Data

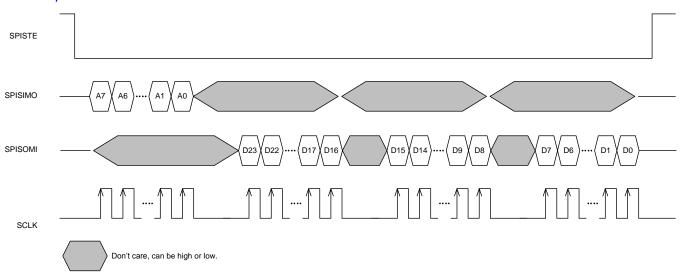
The SPI READ register bit must be first set to 0 before writing to a register. When SPISTE is low:

- Serially shifting bits into the device is enabled.
- Serial data (on the SPISIMO pin) are latched at every SCLK rising edge.
- The serial data are loaded into the register at every 32nd SCLK rising edge.

Programming (continued)

In case the word length exceeds a multiple of 32 bits, the excess bits are ignored. Data can be loaded in multiples of 32-bit words within a single active SPISTE pulse. The first eight bits form the register address and the remaining 24 bits form the register data. Figure 71 shows an SPI timing diagram for a single write operation. For multiple read and write cycles, refer to the *Multiple Data Reads and Writes* section.




Figure 71. AFE SPI Write Timing Diagram

Programming (continued)

8.5.2.2 Reading Data

The SPI_READ register bit must be first set to 1 before reading from a register. The AFE4403 includes a mode where the contents of the internal registers can be read back on the SPISOMI pin. This mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the AFE. To enable this mode, first set the SPI_READ register bit using the SPI write command, as described in the *Writing Data* section. In the next command, specify the SPI register address with the desired content to be read. Within the same SPI command sequence, the AFE outputs the contents of the specified register on the SPISOMI pin. Figure 72 shows an SPI timing diagram for a single read operation. For multiple read and write cycles, refer to the *Multiple Data Reads and Writes* section.

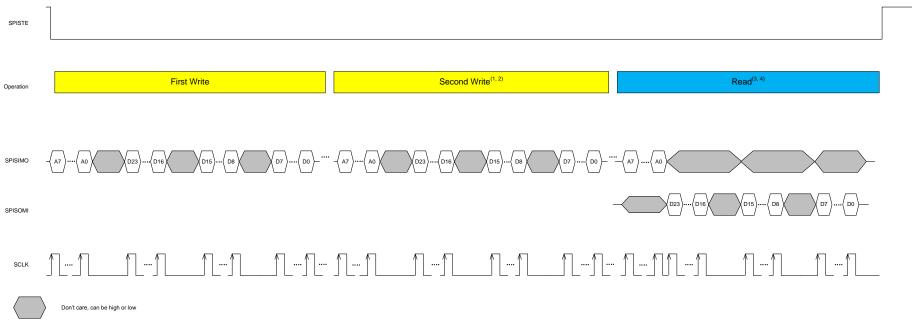

- (1) The SPI READ register bit must be enabled before attempting a serial readout from the AFE.
- (2) Specify the register address of the content that must be readback on bits A[7:0].
- (3) The AFE outputs the contents of the specified register on the SPISOMI pin.

Figure 72. AFE SPI Read Timing Diagram

TEXAS INSTRUMENTS

8.5.2.3 Multiple Data Reads and Writes

The device includes functionality where multiple read and write operations can be performed during a single SPISTE event. To enable this functionality, the first eight bits determine the register address to be written and the remaining 24 bits determine the register data. Perform two writes with the SPI read bit enabled during the second write operation in order to prepare for the read operation, as described in the *Writing Data* section. In the next command, specify the SPI register address with the desired content to be read. Within the same SPI command sequence, the AFE outputs the contents of the specified register on the SPISOMI pin. This functionality is described in the *Writing Data* and *Reading Data* sections. Figure 73 shows a timing diagram for the SPI multiple read and write operations.

- (1) The SPI read register bit must be enabled before attempting a serial readout from the AFE.
- (2) The second write operation must be configured for register 0 with data 000001h.
- (3) Specify the register address whose contents must be read back on A[7:0].
- (4) The AFE outputs the contents of the specified register on the SPISOMI pin.

Figure 73. Serial Multiple Read and Write Operations

8.5.2.4 Register Initialization

After power-up, the internal registers **must** be initialized to the default values. This initialization can be done in one of two ways:

- Through a hardware reset by applying a low-going pulse on the RESET pin, or
- By applying a software reset. Using the serial interface, set SW_RESET (bit D3 in register 00h) high. This setting initializes the internal registers to the default values and then self-resets to 0. In this case, the RESET pin is kept high (inactive).

8.5.2.5 AFE SPI Interface Design Considerations

Note that when the AFE4403 is deselected, the SPISOMI, CLKOUT, ADC_RDY, and DIAG_END digital output pins do not enter a 3-state mode. This condition, therefore, must be taken into account when connecting multiple devices to the SPI port and for power-management considerations. In order to avoid loading the SPI bus when multiple devices are connected, the SOMI_TRI register bit must be to 1 whenever the AFE SPI is inactive. The DIGOUT_TRISTATE register bit must be set to 1 to tri-state the ADC_RDY and DIAG_END pins. The CLKOUT_TRI register bit must be set to 1 to put the CLKOUT buffer in tri-state mode.

TEXAS INSTRUMENTS

8.6 Register Maps

8.6.1 AFE Register Map

The AFE consists of a set of registers that can be used to configure it, such as receiver timings, I-V amplifier settings, transmit LED currents, and so forth. The registers and their contents are listed in Table 6. These registers can be accessed using the AFE SPI interface.

Table 6. AFE Register Map

	REGISTER	ADDI	RESS												REGI	STER D	ATA										
NAME	CONTROL ⁽¹⁾	Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CONTROLO	W	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SW_RST	DIAG_EN	TIM_COUNT_RST	SPI_READ
LED2STC	R/W	01	1	0	0	0	0	0	0	0	0								LED2S	TC[15:0]							
LED2ENDC	R/W	02	2	0	0	0	0	0	0	0	0								LED2EN	IDC[15:0]							
LED2LEDSTC	R/W	03	3	0	0	0	0	0	0	0	0							L	ED2LED	STC[15:0]							
LED2LEDENDC	R/W	04	4	0	0	0	0	0	0	0	0 0 ALED2STC[15:0] 0 0 ALED2ENDC[15:0] 0 0 LED1STC[15:0]																
ALED2STC	R/W	05	5	0	0	0	0	0	0	0	0 0 LED2LEDENDC[15:0] 0 0 ALED2STC[15:0] 0 0 ALED2ENDC[15:0] 0 0 LED1STC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1ENDC[15:0]																
ALED2ENDC	R/W	06	6	0	0	0	0	0	0	0	0 0 LED2LEDENDC[15:0] 0 0 ALED2STC[15:0] 0 0 ALED2ENDC[15:0] 0 0 LED1STC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1LEDSTC[15:0] 0 0 LED1LEDSTC[15:0]																
LED1STC	R/W	07	7	0	0	0	0	0	0	0	0 0 ALED2STC[15:0] 0 0 ALED2ENDC[15:0] 0 0 LED1STC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1LEDSTC[15:0]																
LED1ENDC	R/W	08	8	0	0	0	0	0	0	0	0 0 ALED2STC[15:0] 0 0 ALED2ENDC[15:0] 0 0 LED1STC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1LEDSTC[15:0] 0 0 LED1LEDSTC[15:0] 0 0 LED1LEDSTC[15:0]																
LED1LEDSTC	R/W	09	9	0	0	0	0	0	0	0	0 0 LED1STC[15:0] 0 0 LED1ENDC[15:0] 0 0 LED1LEDSTC[15:0]																
LED1LEDENDC	R/W	0A	10	0	0	0	0	0	0	0	0																
ALED1STC	R/W	0B	11	0	0	0	0	0	0	0	0 LED2LEDENDC[15:0] 0 ALED2STC[15:0] 0 ALED2ENDC[15:0] 0 LED1STC[15:0] 0 LED1ENDC[15:0] 0 LED1LEDSTC[15:0] 0 LED1LEDENDC[15:0] 0 ALED1STC[15:0] 0 ALED1ENDC[15:0] 0 LED2CONVST[15:0] 0 LED2CONVEND[15:0]																
ALED1ENDC	R/W	0C	12	0	0	0	0	0	0	0	0 ALED2STC[15:0] 0 ALED2ENDC[15:0] 0 LED1STC[15:0] 0 LED1ENDC[15:0] 0 LED1LEDSTC[15:0] 0 LED1LEDSTC[15:0] 0 ALED1STC[15:0] 0 LED1LEDENDC[15:0] 0 LED1LEDENDC[15:0] 0 LED1LEDENDC[15:0] 0 LED1LEDENDC[15:0] 0 LED1LEDENDC[15:0]																
LED2CONVST	R/W	0D	13	0	0	0	0	0	0	0	0							L	ED2CON	IVST[15:0]							
LED2CONVEND	R/W	0E	14	0	0	0	0	0	0	0	0							LE	D2CON	VEND[15:0	0]						
ALED2CONVST	R/W	0F	15	0	0	0	0	0	0	0	0							AL	ED2CO	NVST[15:0)]						
ALED2CONVEND	R/W	10	16	0	0	0	0	0	0	0	0							AL	ED2CON	IVEND[15:	0]						
LED1CONVST	R/W	11	17	0	0	0	0	0	0	0	0							L	ED1CON	NVST[15:0]							
LED1CONVEND	R/W	12	18	0	0	0	0	0	0	0	0							LE	D1CON	VEND[15:0)]						
ALED1CONVST	R/W	13	19	0	0	0	0	0	0	0	0							AL	ED1CO	NVST[15:0)]						
ALED1CONVEND	R/W	14	20	0	0	0	0	0	0	0	0							AL	ED1CON	IVEND[15:	0]						
ADCRSTSTCT0	R/W	15	21	0	0	0	0	0	0	0	0							,	ADCRST	CT0[15:0]							
ADCRSTENDCT0	R/W	16	22	0	0	0	0	0	0	0	0							Α	DCREN	OCT0[15:0]]						
ADCRSTSTCT1	R/W	17	23	0	0	0	0	0	0	0	0							,	ADCRST	CT1[15:0]							
ADCRSTENDCT1	R/W	18	24	0	0	0	0	0	0	0	0							Α	DCREN	OCT1[15:0]							
ADCRSTSTCT2	R/W	19	25	0	0	0	0	0	0	0	0							,	ADCRST	CT2[15:0]							
ADCRSTENDCT2	R/W	1A	26	0	0	0	0	0	0	0	0							Α	DCREN	OCT2[15:0]]						

⁽¹⁾ R = read only, R/W = read or write, N/A = not available, and W = write only.

Table 6. AFE Register Map (continued)

	REGISTER	ADD	RESS													STER D	ATA										
NAME	CONTROL ⁽¹⁾	Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT3	R/W	1B	27	0	0	0	0	0	0	0	0							F	DCRST	CT3[15:0]		-					
ADCRSTENDCT3	R/W	1C	28	0	0	0	0	0	0	0	0									OCT3[15:0]							
PRPCOUNT	R/W	1D	29	0	0	0	0	0	0	0	0								PRPC	T[15:0]							
CONTROL1	R/W	1E	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TIMEREN				NUM	IAV[7:0]			
SPARE1	N/A	1F	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIAGAIN	R/W	20	32	0	0	0	0	0	0	0	0	ENSEPGAN	STAGE2EN1	0	0	0	ST	G2GAIN1[2:0]		CF_L	_ED1[4	:0]		R	F_LED1	[2:0]
TIA_AMB_GAIN	R/W	21	33	0	0	0	0		AMBD	AC[3:0]		FLTRCNRSEL	STAGE2EN	0	0	0	ST	G2GAIN2[2:0]		CF_	LED[4:	0]		F	RF_LED[2:0]
LEDCNTRL	R/W	22	34	0	0	0	0	0	0	2	LED_KANGE[1:0]				LEC	D1[7:0]							LEC	02[7:0]			
CONTROL2	R/W	23	35	0	0	0	DYNAMIC1	0	TX_REF1	TX_REF0	0	0	DYNAMIC2	0	0	TXBRGMOD	DIGOUT_TRISTATE	XTALDIS	EN_SLOW_DIAG	0	0	0	DYNAMIC3	DYNAMIC4	PDNTX	PDNRX	PDNAFE
SPARE2	N/A	24	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPARE3	N/A	25	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPARE4	N/A	26	38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RESERVED1	N/A	27	39	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RESERVED2	N/A	28	40	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
ALARM	R/W	29	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LED2VAL	R	2A	42		•	•									LED	2VAL[23	:0]		•	•	•						
ALED2VAL	R	2B	43												ALED	2VAL[2	3:0]										
LED1VAL	R	2C	44												LED'	1VAL[23	:0]										
ALED1VAL	R	2D	45												ALED	1VAL[2	3:0]										
LED2-ALED2VAL	R	2E	46											L	ED2-AL	ED2VA	L[23:0]										
LED1-ALED1VAL	R	2F	47											L	.ED1-AL	ED1VA	L[23:0]										

Table 6. AFE Register Map (continued)

NAME	REGISTER	ADD	RESS												REGIS	STER D	ATA										
NAME	CONTROL ⁽¹⁾	Hex	Dec	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIAG	R	30	48	0	0	0	0	0	0	0	0	0	0	0	PD_ALM	LED_ALM	LEDZOPEN	LED10PEN	LEDSC	OUTNSHGND	OUTPSHGND	PDOC	PDSC	INNSCGND	INPSCGND	INNSCLED	INPSCLED
CONTROL3	R/W	31	49	0	0	0	0	0	0	0	0	TX3_MODE	0	0	0	0	0	0	0	0	0	0	SOMI_TRI	CLKOUT_TRI	C	CLKDIV[2:0]
PDNCYCLESTC	R/W	32	50	0	0	0	0	0	0	0	0 PDNCYCLESTC[15:0]																
PDNCYCLEENDC	R/W	33	51	0	0	0	0	0	0	0	0																

8.6.2 AFE Register Description

Figure 74. CONTROL0: Control Register 0 (Address = 00h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	SW_RST	DIAG_EN	TIM_ COUNT_ RST	SPI_ READ

This register is write-only. CONTROL0 is used for AFE software and count timer reset, diagnostics enable, and SPI read functions.

Bits 23:4 Must be 0

Bit 3 SW RST: Software reset

0 = No action (default after reset)

1 = Software reset applied; resets all internal registers to the default values and self-clears to 0

Bit 2 DIAG_EN: Diagnostic enable

0 = No action (default after reset)

1 = Diagnostic mode is enabled and the diagnostics sequence starts when this bit is set. At the end of the sequence, all fault status are stored in the DIAG: Diagnostics Flag Register, Afterwards, the DIAG EN register bit self-clears to 0.

Note that the diagnostics enable bit is automatically reset after the diagnostics completes (16 ms). During the diagnostics mode, ADC data are invalid because of the toggling diagnostics switches.

Bit 1 TIM_CNT_RST: Timer counter reset

0 = Disables timer counter reset, required for normal timer operation (default after reset)

1 = Timer counters are in reset state

Bit 0 SPI READ: SPI read

0 = SPI read is disabled (default after reset)

1 = SPI read is enabled

Figure 75. LED2STC: Sample LED2 Start Count Register (Address = 01h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2S	ΓC[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
					LED2S	TC[15:0]					

This register sets the start timing value for the LED2 signal sample.

Bits 23:16 Must be 0

Bits 15:0 LED2STC[15:0]: Sample LED2 start count

The contents of this register can be used to position the start of the sample LED2 signal with respect to the pulse repetition period (PRP), as specified in the PRPCOUNT register. The count is specified as the number of

4-MHz clock cycles. Refer to the Using the Timer Module section for details.

Figure 76. LED2ENDC: Sample LED2 End Count Register (Address = 02h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2EN	DC[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
					LED2EN	IDC[15:0]					

This register sets the end timing value for the LED2 signal sample.

Bits 23:16 Must be 0

Bits 15:0 LED2ENDC[15:0]: Sample LED2 end count

The contents of this register can be used to position the end of the sample LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 77. LED2LEDSTC: LED2 LED Start Count Register (Address = 03h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2LED	STC[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
					LED2LED	STC[15:0]					

This register sets the start timing value for when the LED2 signal turns on.

Bits 23:16 Must be 0

Bits 15:0 LED2LEDSTC[15:0]: LED2 start count

The contents of this register can be used to position the start of the LED2 with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 78. LED2LEDENDC: LED2 LED End Count Register (Address = 04h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2LEDE	NDC[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
					LED2LEDE	ENDC[15:0]					

This register sets the end timing value for when the LED2 signal turns off.

Bits 23:16 Must be 0

Bits 15:0 LED2LEDENDC[15:0]: LED2 end count

The contents of this register can be used to position the end of the LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 79. ALED2STC: Sample Ambient LED2 Start Count Register (Address = 05h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED2STC[15:0]				
11	10	9	8	7	6	5	4	3	0				
ALED2STC[15:0]													

This register sets the start timing value for the ambient LED2 signal sample.

Bits 23:16 Must be 0

Bits 15:0 ALED2STC[15:0]: Sample ambient LED2 start count

The contents of this register can be used to position the start of the sample ambient LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 80. ALED2ENDC: Sample Ambient LED2 End Count Register (Address = 06h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED2ENDC[15:0]				
11	10	9	8	7	6	5	4	3	2 1				
ALED2ENDC[15:0]													

This register sets the end timing value for the ambient LED2 signal sample.

Bits 23:16 Must be 0

Bits 15:0 ALED2ENDC[15:0]: Sample ambient LED2 end count

The contents of this register can be used to position the end of the sample ambient LED2 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 81. LED1STC: Sample LED1 Start Count Register (Address = 07h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		LED1STC[15:0]				
11	10	9	8	7	6	5	4	3	3 2 1 (
LED1STC[15:0]													

This register sets the start timing value for the LED1 signal sample.

Bits 23:17 Must be 0

Bits 16:0 LED1STC[15:0]: Sample LED1 start count

The contents of this register can be used to position the start of the sample LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of

4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 82. LED1ENDC: Sample LED1 End Count (Address = 08h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		LED1ENDC[15:0]			
11	10	9	8	7	6	5	4	3	2 1			
	LED1ENDC[15:0]											

This register sets the end timing value for the LED1 signal sample.

Bits 23:17 Must be 0

Bits 16:0 LED1ENDC[15:0]: Sample LED1 end count

The contents of this register can be used to position the end of the sample LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of

4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 83. LED1LEDSTC: LED1 LED Start Count Register (Address = 09h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		LED1LEDSTC[15:0]			
11	10	9	8	7	6	5	4	3	2	0		
	LED1LEDSTC[15:0]											

This register sets the start timing value for when the LED1 signal turns on.

Bits 23:16 Must be 0

Bits 15:0 LED1LEDSTC[15:0]: LED1 start count

The contents of this register can be used to position the start of the LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 84. LED1LEDENDC: LED1 LED End Count Register (Address = 0Ah, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		LED1LEDE			
11	10	9	8	7	6	5	4	3	2 1			
	LED1LEDENDC[15:0]											

This register sets the end timing value for when the LED1 signal turns off.

Bits 23:16 Must be 0

Bits 15:0 LED1LEDENDC[15:0]: LED1 end count

The contents of this register can be used to position the end of the LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 85. ALED1STC: Sample Ambient LED1 Start Count Register (Address = 0Bh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED1STC[15:0]				
11	10	9	8	7	6	5	4	3	3 2 1				
ALED1STC[15:0]													

This register sets the start timing value for the ambient LED1 signal sample.

Bits 23:16 Must be 0

Bits 15:0 ALED1STC[15:0]: Sample ambient LED1 start count

The contents of this register can be used to position the start of the sample ambient LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 86. ALED1ENDC: Sample Ambient LED1 End Count Register (Address = 0Ch, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED1ENDC[15:0]				
11	10	9	8	7	6	5	4	3	3 2 1				
ALED1ENDC[15:0]													

This register sets the end timing value for the ambient LED1 signal sample.

Bits 23:16 Must be 0

Bits 15:0 ALED1ENDC[15:0]: Sample ambient LED1 end count

The contents of this register can be used to position the end of the sample ambient LED1 signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 87. LED2CONVST: LED2 Convert Start Count Register (Address = 0Dh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2CON		
11	10	9	8	7	6	5	4	3	2	1	0
					LED2CON	IVST[15:0]					

This register sets the start timing value for the LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED2CONVST[15:0]: LED2 convert start count

The contents of this register can be used to position the start of the LED2 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 88. LED2CONVEND: LED2 Convert End Count Register (Address = 0Eh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED2CON\		
11	10	9	8	7	6	5	4	3	2	1	0
	LED2CONVEND[15:0]										

This register sets the end timing value for the LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED2CONVEND[15:0]: LED2 convert end count

The contents of this register can be used to position the end of the LED2 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 89. ALED2CONVST: LED2 Ambient Convert Start Count Register (Address = 0Fh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		ALED2COI		
11	10	9	8	7	6	5	4	3	2	0	
ALED2CONVST[15:0]											

This register sets the start timing value for the ambient LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 ALED2CONVST[15:0]: LED2 ambient convert start count

The contents of this register can be used to position the start of the LED2 ambient conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 90. ALED2CONVEND: LED2 Ambient Convert End Count Register (Address = 10h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		ALED2CONVEND[15:0]			
11	10	9	8	7	6	5	4	3	2 1			
	ALED2CONVEND[15:0]											

This register sets the end timing value for the ambient LED2 conversion.

Bits 23:16 Must be 0

Bits 15:0 ALED2CONVEND[15:0]: LED2 ambient convert end count

The contents of this register can be used to position the end of the LED2 ambient conversion signal with respect to the PRP. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 91. LED1CONVST: LED1 Convert Start Count Register (Address = 11h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		LED1CONVST[15:0]				
11	10	9	8	7	6	5	4	3	2	0			
	LED1CONVST[15:0]												

This register sets the start timing value for the LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED1CONVST[15:0]: LED1 convert start count

The contents of this register can be used to position the start of the LED1 conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 92. LED1CONVEND: LED1 Convert End Count Register (Address = 12h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		LED1CON		
11	10	9	8	7	6	5	4	3	2	1	0
LED1CONVEND[15:0]											

This register sets the end timing value for the LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0 LED1CONVEND[15:0]: LED1 convert end count

The contents of this register can be used to position the end of the LED1 conversion signal with respect to the PRP. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 93. ALED1CONVST: LED1 Ambient Convert Start Count Register (Address = 13h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED1CONVST[15:0]				
11	10	9	8	7	6	5	4	3	2	1	0		
	ALED1CONVST[15:0]												

This register sets the start timing value for the ambient LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0 ALED1CONVST[15:0]: LED1 ambient convert start count

The contents of this register can be used to position the start of the LED1 ambient conversion signal with respect to the PRP, as specified in the PRPCOUNT register. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 94. ALED1CONVEND: LED1 Ambient Convert End Count Register (Address = 14h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ALED1CONVEND[15:0]				
11	10	9	8	7	6	5	4	3	2	1	0		
	ALED1CONVEND[15:0]												

This register sets the end timing value for the ambient LED1 conversion.

Bits 23:16 Must be 0

Bits 15:0 ALED1CONVEND[15:0]: LED1 ambient convert end count

The contents of this register can be used to position the end of the LED1 ambient conversion signal with respect to the PRP. The count is specified as the number of 4-MHz clock cycles. Refer to the *Using the Timer Module* section for details.

Figure 95. ADCRSTSTCT0: ADC Reset 0 Start Count Register (Address = 15h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTS		
11	10	9	8	7	6	5	4	3	2	0	
ADCRSTSTCT0[15:0]											

This register sets the start position of the ADC0 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTSTCT0[15:0]: ADC RESET 0 start count

The contents of this register can be used to position the start of the ADC reset conversion signal (default value after reset is 0000h). Refer to the *Using the Timer Module* section for details.

Figure 96. ADCRSTENDCT0: ADC Reset 0 End Count Register (Address = 16h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ADCRSTENDCT0[15:0]				
11	10	9	8	7	6	5	4	3	2	1	0		
	ADCRSTENDCT0[15:0]												

This register sets the end position of the ADC0 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTENDCT0[15:0]: ADC RESET 0 end count

The contents of this register can be used to position the end of the ADC reset conversion signal (default value after reset is 0000h). Refer to the *Using the Timer Module* section for details.

Figure 97. ADCRSTSTCT1: ADC Reset 1 Start Count Register (Address = 17h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTS		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT1[15:0]											

This register sets the start position of the ADC1 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTSTCT1[15:0]: ADC RESET 1 start count

The contents of this register can be used to position the start of the ADC reset conversion. Refer to the *Using the Timer Module* section for details.

Figure 98. ADCRSTENDCT1: ADC Reset 1 End Count Register (Address = 18h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTEN	IDCT1[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTENDCT1[15:0]											

This register sets the end position of the ADC1 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTENDCT1[15:0]: ADC RESET 1 end count

The contents of this register can be used to position the end of the ADC reset conversion. Refer to the *Using the Timer Module* section for details.

Figure 99. ADCRSTSTCT2: ADC Reset 2 Start Count Register (Address = 19h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTSTCT2[15:0]			
11	10	9	8	7	6	5	4	3	2	1	0	
	ADCRSTSTCT2[15:0]											

This register sets the start position of the ADC2 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTSTCT2[15:0]: ADC RESET 2 start count

The contents of this register can be used to position the start of the ADC reset conversion. Refer to the *Using the Timer Module* section for details.

Figure 100. ADCRSTENDCT2: ADC Reset 2 End Count Register (Address = 1Ah, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	0	0		ADCRSTENDCT2[15:0]				
11	10	9	8	7	6	5	4	3	2 1 0				
	ADCRSTENDCT2[15:0]												

This register sets the end position of the ADC2 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTENDCT2[15:0]: ADC RESET 2 end count

The contents of this register can be used to position the end of the ADC reset conversion. Refer to the *Using the Timer Module* section for details.

Figure 101. ADCRSTSTCT3: ADC Reset 3 Start Count Register (Address = 1Bh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		ADCRSTS		
11	10	9	8	7	6	5	4	3	2	1	0
ADCRSTSTCT3[15:0]											

This register sets the start position of the ADC3 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTSTCT3[15:0]: ADC RESET 3 start count

The contents of this register can be used to position the start of the ADC reset conversion. Refer to the *Using the Timer Module* section for details.

Figure 102. ADCRSTENDCT3: ADC Reset 3 End Count Register (Address = 1Ch, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12	
0	0	0	0	0	0	0	0		ADCRSTEN	DCT3[15:0]		
11	10	9	8	7	6	5	4	3	2	1	0	
	ADCRSTENDCT3[15:0]											

This register sets the end position of the ADC3 reset conversion signal.

Bits 23:16 Must be 0

Bits 15:0 ADCRSTENDCT3[15:0]: ADC RESET 3 end count

The contents of this register can be used to position the end of the ADC reset conversion signal (default value after reset is 0000h). Refer to the *Using the Timer Module* section for details.

Figure 103. PRPCOUNT: Pulse Repetition Period Count Register (Address = 1Dh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		PRPCOL	JNT[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
PRPCOUNT[15:0]											

This register sets the device pulse repetition period count.

Bits 23:16 Must be 0

Bits 15:0 PRPCOUNT[15:0]: Pulse repetition period count

The contents of this register can be used to set the pulse repetition period (in number of clock cycles of the 4-MHz clock). The PRPCOUNT value must be set in the range of 800 to 64000. Values below 800 do not allow sufficient sample time for the four samples; see the *Electrical Characteristics* table.

Figure 104. CONTROL1: Control Register 1 (Address = 1Eh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	TIMEREN				NUMA	AV[7:0]			

This register configures the clock alarm pin and timer.

Bits 23:9 Must be 0

Bit 8 TIMEREN: Timer enable

0 = Timer module is disabled and all internal clocks are off (default after reset)

1 = Timer module is enabled

Bits 7:0 NUMAV[7:0]: Number of averages

Specify an 8-bit value corresponding to the number of ADC samples to be averaged -1.

For example, to average four ADC samples, set NUMAV[7:0] equal to 3.

The maximum number of averages is 16. Any setting of NUMAV[7:0] greater than or equal to a decimal value of 15 results in the number of averages getting set to 16.

Figure 105. SPARE1: SPARE1 Register For Future Use (Address = 1Fh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 106. TIAGAIN: Transimpedance Amplifier Gain Setting Register (Address = 20h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	ENSEP GAIN	STAGE2 EN1	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	ST	G2GAIN1[2	2:0]	CF_LED1[4:0]					R	F_LED1[2:0	0]

This register sets the device transimpedance amplifier gain mode and feedback resistor and capacitor values.

Bits 23:16 Must be 0

Bit 15 ENSEPGAIN: Enable separate gain mode

0 = The R_F, C_F values and stage 2 gain settings are the same for both the LED2 and LED1 signals; the values are specified by the bits (RF_LED2, CF_LED2, STAGE2EN2, STG2GAIN2) in the TIA AMB GAIN register (default after reset)

1 = The R_F , C_F values and stage 2 gain settings can be independently set for the LED2 and LED1 signals. The values for LED1 are specified using the bits (RF_LED1, CF_LED1, STAGE2EN1, STG2GAIN1) in the TIAGAIN register, whereas the values for LED2 are specified using the corresponding bits in the TIA_AMB_GAIN register.

Bit 14 STAGE2EN1: Enable stage 2 for LED 1

0 = Stage 2 is bypassed (default after reset)

1 = Stage 2 is enabled with the gain value specified by the STG2GAIN1[2:0] bits

Bits 13:11 Must be 0

Bits 10:8 STG2GAIN1[2:0]: Program stage 2 gain for LED1

000 = 0 dB, or linear gain of 1 (default after reset) 100 = 12 dB, or linear gain of 4 101 = Do not use 001 = 3.5 dB, or linear gain of 2 110 = Do not use 010 = 6 dB, or linear gain of 2 111 = Do not use 011 = 9.5 dB, or linear gain of 3

Bits 7:3 CF_LED1[4:0]: Program C_F for LED1

00000 = 5 pF (default after reset) 00100 = 25 pF + 5 pF 00001 = 5 pF + 5 pF 01000 = 50 pF + 5 pF 00010 = 15 pF + 5 pF 10000 = 150 pF + 5 pF

Note that any combination of these C_F settings is also supported by setting multiple bits to 1. For example, to obtain $C_F = 100$ pF, set bits 7:3 = 01111.

Bits 2:0 RF_LED1[2:0]: Program R_F for LED1

$000 = 500 \text{ k}\Omega$ (default after reset)	$100 = 25 \text{ k}\Omega$
$001 = 250 \text{ k}\Omega$	$101 = 10 \text{ k}\Omega$
$010 = 100 \text{ k}\Omega$	$110 = 1 M\Omega$
$011 = 50 \text{ k}\Omega$	111 = None

Figure 107. TIA_AMB_GAIN: Transimpedance Amplifier and Ambient Cancellation Stage Gain Register (Address = 21h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0		AMBD	AC[3:0]		FLTR CNRSEL	STAGE2 EN2	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	S ⁻	TG2GAIN[2:	0]		(CF_LED2[4:0	0]		RI	F_LED2[2:0	0]

This register configures the ambient light cancellation amplifier gain, cancellation current, and filter corner frequency.

Bits 23:20 Must be 0

Bits 19:16 AMBDAC[3:0]: Ambient DAC value

These bits set the value of the cancellation current.

0000 = 0 μA (default after reset)	1000 = 8 μA
$0001 = 1 \mu A$	$1001 = 9 \mu A$
$0010 = 2 \mu A$	1010 = 10 μA
$0011 = 3 \mu A$	1011 = Do not use
$0100 = 4 \mu A$	1100 = Do not use
$0101 = 5 \mu A$	1101 = Do not use
$0110 = 6 \mu A$	1110 = Do not use
$0111 = 7 \mu A$	1111 = Do not use

Bit 15 Must be 0

Bit 14 STAGE2EN2: Stage 2 enable for LED 2

0 = Stage 2 is bypassed (default after reset)

1 = Stage 2 is enabled with the gain value specified by the STG2GAIN2[2:0] bits

Bits 13:11 Must be 0

Bits 10:8 STG2GAIN2[2:0]: Stage 2 gain setting for LED 2

000 = 0 dB, or linear gain of 1 (default after reset)

001 = 3.5 dB, or linear gain of 1.5 010 = 6 dB, or linear gain of 2

011 = 9.5 dB, or linear gain of 3

100 = 12 dB, or linear gain of 4

101 = Do not use 110 = Do not use 111 = Do not use

Bits 7:3 CF_LED[4:0]: Program C_F for LEDs

00000 = 5 pF (default after reset)	00100 = 25 pF + 5 pF
00001 = 5 pF + 5 pF	01000 = 50 pF + 5 pF
00010 = 15 pF + 5 pF	10000 = 150 pF + 5 pF

Note that any combination of these C_F settings is also supported by setting multiple bits to 1. For example, to obtain $C_F = 100$ pF, set D[7:3] = 01111.

Bits 2:0 RF_LED[2:0]: Program R_F for LEDs

$000 = 500 \text{ k}\Omega$	$100 = 25 \text{ k}\Omega$
$001 = 250 \text{ k}\Omega$	$101 = 10 \text{ k}\Omega$
$010 = 100 \text{ k}\Omega$	$110 = 1 M\Omega$
$011 = 50 \text{ k}\Omega$	111 = None

Figure 108. LEDCNTRL: LED Control Register (Address = 22h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12		
0	0	0	0	0	0	LED_RA	NGE[1:0]	LED1[7:0]					
11	10	9	8	7	6	5	4	3	2	1	0		
	LED'	1[7:0]			LED2[7:0]								

This register sets the LED current range and the LED1 and LED2 drive current.

Bits 23:18 Must be 0

Bits 17:16 LED_RANGE[1:0]: LED range

These bits program the full-scale LED current range for Tx. Table 7 details the settings.

Bits 15:8 LED1[7:0]: Program LED current for LED1 signal

Use these register bits to specify the LED current setting for LED1 (default after reset is 00h).

The nominal value of the LED current is given by Equation 7, where the full-scale LED current is either 0 mA or 50 mA (as specified by the LED_RANGE[1:0] register bits).

Bits 7:0 LED2[7:0]: Program LED current for LED2 signal

Use these register bits to specify the LED current setting for LED2 (default after reset is 00h).

The nominal value of LED current is given by Equation 8, where the full-scale LED current is either 0 mA or 50 mA (as specified by the LED RANGE[1:0] register bits).

Table 7. Full-Scale LED Current across Tx Reference Voltage Settings⁽¹⁾

LED_RANGE[1:	TX_REF = 0.25 V		TX_REF	= 0.5 V	TX_REF	= 0.75 V	TX_REF = 1.0 V		
0]	I _{MAX}	V _{HR} ⁽²⁾	I _{MAX}	V _{HR}	I _{MAX}	V_{HR}	I _{MAX}	V_{HR}	
00 (default after reset)	50 mA	0.75 V	100 mA	1.1 V	Do not use	_	Do not use		
01	25 mA	0.7 V	50 mA	1.0 V	75 mA	1.3 V	100 mA	1.6 V	
10	50 mA	0.75 V	100 mA	1.1 V	Do not use	_	Do not use	-	
11	Tx is off	_	Tx is off	_	Tx is off	_	Tx is off		

(1) For a 3-V to 3.6-V supply, use TX_REF = 0.25 or 0.5 V. For a 4.75-V to 5.25-V supply, use TX_REF = 0.75 V or 1.0 V.

 $\frac{\text{LED1[7:0]}}{256} \times \text{Full-Scale Current}$

(7)

 $\frac{\text{LED2[7:0]}}{256} \times \text{Full-Scale Current}$

(8)

⁽²⁾ V_{HR} refers to the headroom voltage (over and above the LED forward voltage and cable voltage drop) needed on the LED_DRV_SUP. The V_{HR} values specified are for the H-bridge configuration. In the common anode configuration, V_{HR} can be lower by 0.25 V.

Figure 109. CONTROL2: Control Register 2 (Address = 23h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	DYNAMI C1	0	TX_REF1	TX_REF0	0	0	DYNAMI C2	0	0
11	10	9	8	7	6	5	4	3	2	1	0
TXBRG MOD	DIGOUT_ TRI STATE	XTAL DIS	EN_ SLOW_ DIAG	0	0	0	DYNAMI C3	DYNAMI C4	PDNTX	PDNRX	PDNAFE

This register controls the LED transmitter, crystal, and the AFE, transmitter, and receiver power modes.

Bits 23:21 Must be 0
Bit 20 DYNAMIC1

0 = Transmitter is not powered down during dynamic power-down phase 1 = Transmitter is powered down during dynamic power-down phase

Bit 19 Must be 0

Bits 18:17 TX_REF[1:0]: Tx reference voltage

These bits set the transmitter reference voltage. This Tx reference voltage is available on the device TX_REF pin.

00 = 0.25-V Tx reference voltage (default value after reset)

01 = 0.5-V Tx reference voltage 10 = 1.0-V Tx reference voltage

11 = 0.75-V Tx reference voltage, D3

Bits 16:15 Must be 0
Bit 14 DYNAMIC2

0 = Part of the ADC is not powered down during dynamic power-down phase 1 = Part of the ADC is powered down during dynamic power-down phase

Bit 11 TXBRGMOD: Tx bridge mode

0 = LED driver is configured as an H-bridge (default after reset)

1 = LED driver is configured as a push-pull

Bit 10 DIGOUT TRISTATE: Tri-state bit for the ADC RDY and DIAG END pins

0 = ADC_RDY and DIAG_END are not tri-stated 1 = ADC_RDY and DIAG_END are tri-stated

Bit 9 XTALDIS: Crystal disable mode

0 = The crystal module is enabled; the 8-MHz crystal must be connected to the XIN and XOUT pins

1 = The crystal module is disabled; an external 8-MHz clock must be applied to the XIN pin

Bit 8 EN_SLOW_DIAG: Fast diagnostics mode enable

0 = Fast diagnostics mode, 8 ms (default value after reset)

1 = Slow diagnostics mode, 16 ms

Bits 7:5 Must be 0
Bit 4 DYNAMIC3

0 = TIA is not powered down during dynamic power-down phase1 = TIA is powered down during dynamic power-down phase

Bit 3 DYNAMIC4

0 = The rest of the ADC is not powered down during dynamic power-down phase 1 = The rest of the ADC is powered down during dynamic power-down phase

Bit 2 PDN_TX: Tx power-down

0 = The Tx is powered up (default after reset)1 = Only the Tx module is powered down

Bit 1 PDN_RX: Rx power-down

0 = The Rx is powered up (default after reset)1 = Only the Rx module is powered down

Bit 0 PDN_AFE: AFE power-down

0 = The AFE is powered up (default after reset)

1 = The entire AFE is powered down (including the Tx, Rx, and diagnostics blocks)

Figure 110. SPARE2: SPARE2 Register For Future Use (Address = 24h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 111. SPARE3: SPARE3 Register For Future Use (Address = 25h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 112. SPARE4: SPARE4 Register For Future Use (Address = 26h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register is a spare register and is reserved for future use.

Bits 23:0 Must be 0

Figure 113. RESERVED1: RESERVED1 Register For Factory Use Only (Address = 27h, Reset Value = XXXXh)

23	22	21	20	19	18	17	16	15	14	13	12
X ⁽¹⁾	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
11	10	9	8	7	6	5	4	3	2	1	0
X	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х

(1) X = don't care.

This register is reserved for factory use. Readback values vary between devices.

Figure 114. RESERVED2: RESERVED2 Register For Factory Use Only (Address = 28h, Reset Value = XXXXh)

23	22	21	20	19	18	17	16	15	14	13	12
X ⁽¹⁾	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Х
11	10	9	8	7	6	5	4	3	2	1	0
Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Χ	Х	Х

⁽¹⁾ X = don't care.

This register is reserved for factory use. Readback values vary between devices.

Figure 115. ALARM: Alarm Register (Address = 29h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0

This register controls the alarm pin functionality.

Bits 23:0 Must be 0

Figure 116. LED2VAL: LED2 Digital Sample Value Register (Address = 2Ah, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					LED2V	AL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
					LED2V	AL[23:0]					

Bits 23:0 LED2VAL[23:0]: LED2 digital value

This register contains the digital value of the latest LED2 sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 117. ALED2VAL: Ambient LED2 Digital Sample Value Register (Address = 2Bh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					ALED2V	'AL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
	ALED2VAL[23:0]										

Bits 23:0 ALED2VAL[23:0]: LED2 ambient digital value

This register contains the digital value of the latest LED2 ambient sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 118. LED1VAL: LED1 Digital Sample Value Register (Address = 2Ch, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					LED1V	AL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
					LED1V	AL[23:0]					

Bits 23:0 LED1VAL[23:0]: LED1 digital value

This register contains the digital value of the latest LED1 sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 119. ALED1VAL: Ambient LED1 Digital Sample Value Register (Address = 2Dh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					ALED1V	/AL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
					ALED1V	/AL[23:0]					

Bits 23:0 ALED1VAL[23:0]: LED1 ambient digital value

This register contains the digital value of the latest LED1 ambient sample converted by the ADC. The ADC_RDY signal goes high each time that the contents of this register are updated. The host processor must readout this register before the next sample is converted by the AFE.

Figure 120. LED2-ALED2VAL: LED2-Ambient LED2 Digital Sample Value Register (Address = 2Eh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					LED2-ALED	D2VAL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
					LED2-ALED	D2VAL[23:0]					

Bits 23:0 LED2-ALED2VAL[23:0]: (LED2 – LED2 ambient) digital value

This register contains the digital value of the LED2 sample after the LED2 ambient is subtracted. The host processor must readout this register before the next sample is converted by the AFE.

Note that this value is inverted when compared to waveforms shown in many publications.

Figure 121. LED1-ALED1VAL: LED1-Ambient LED1 Digital Sample Value Register (Address = 2Fh, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
					LED1-ALED	01VAL[23:0]					
11	10	9	8	7	6	5	4	3	2	1	0
					LED1-ALED	01VAL[23:0]					

Bits 23:0 LED1-ALED1VAL[23:0]: (LED1 – LED1 ambient) digital value

This register contains the digital value of the LED1 sample after the LED1 ambient is subtracted from it. The host processor must readout this register before the next sample is converted by the AFE.

Note that this value is inverted when compared to waveforms shown in many publications.

Figure 122. DIAG: Diagnostics Flag Register (Address = 30h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	0	0	0	PD_ALM
11	10	9	8	7	6	5	4	3	2	1	0
LED_ ALM	LED2 OPEN	LED1 OPEN	LEDSC	OUTNSH GND	OUTPSH GND	PDOC	PDSC	INNSC GND	INPSC GND	INNSC LED	INPSC LED

This register is read only. This register contains the status of all diagnostic flags at the end of the diagnostics sequence. The end of the diagnostics sequence is indicated by the signal going high on DIAG_END pin.

Bits 23:13 Read only

Bit 12 PD_ALM: Power-down alarm status diagnostic flag

This bit indicates the status of PD_ALM.

0 = No fault (default after reset)

1 = Fault present

Bit 11 LED_ALM: LED alarm status diagnostic flag

This bit indicates the status of LED_ALM.

0 = No fault (default after reset)

1 = Fault present

Bit 10 LED2OPEN: LED2 open diagnostic flag

This bit indicates that LED2 is open. 0 = No fault (default after reset)

1 = Fault present

Bit 9 LED1OPEN: LED1 open diagnostic flag

This bit indicates that LED1 is open. 0 = No fault (default after reset)

1 = Fault present

This bit indicates that LED2 is open. 0 = No fault (default after reset)

1 = Fault present

Bit 8 LEDSC: LED short diagnostic flag

This bit indicates an LED short. 0 = No fault (default after reset)

1 = Fault present

Bit 7 OUTNSHGND: OUTN to GND diagnostic flag

This bit indicates that OUTN is shorted to the GND cable.

0 = No fault (default after reset)

1 = Fault present

Bit 6 OUTPSHGND: OUTP to GND diagnostic flag

This bit indicates that OUTP is shorted to the GND cable.

0 = No fault (default after reset)

1 = Fault present

Bit 5 PDOC: PD open diagnostic flag

This bit indicates that PD is open. 0 = No fault (default after reset)

1 = Fault present

Bit 4 PDSC: PD short diagnostic flag

This bit indicates a PD short. 0 = No fault (default after reset)

1 = Fault present

Bit 3 INNSCGND: INN to GND diagnostic flag

This bit indicates a short from the INN pin to the GND cable.

0 = No fault (default after reset)

1 = Fault present

Bit 2 INPSCGND: INP to GND diagnostic flag

This bit indicates a short from the INP pin to the GND cable.

0 = No fault (default after reset)

1 = Fault present

Bit 1 INNSCLED: INN to LED diagnostic flag

This bit indicates a short from the INN pin to the LED cable.

0 = No fault (default after reset)

1 = Fault present

Bit 0 INPSCLED: INP to LED diagnostic flag

This bit indicates a short from the INP pin to the LED cable.

0 = No fault (default after reset)

1 = Fault present

Figure 123. CONTROL3: Control Register (Address = 31h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0	TX3_MO DE	0	0	0
11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	SOMI_ TRI	CLKOUT _TRI		CLKDIV[2:0]

This register controls the clock divider ratio.

Bits 23:16 Must be 0

Bit 15 TX3_MODE: Selection of third LED

This bit transitions the control from the default two LEDs (on TXP, TXN) to the third LED on TX3.

0 = LEDs on TXP, TXN are active

1 = LED on TX3 is active. Timing engine controls on TXP are transferred to TX3. Maximum current setting supported for the third LED is 50 mA.

Bits 14:5 Must be 0

Bit 4 SOMI TRI: Serial data output 3-state mode

This bit determines the state of the SPISOMI output pin. In order to avoid loading the SPI bus when multiple devices are connected, this bit must be set to 1 (3-state mode) whenever the device SPI is inactive.

0 = SPISOMI output buffer is active (normal operation, default)

1 = SPISOMI output buffer is in 3-state mode

Bit 3 CLKOUT_TRI: CLKOUT output 3-state mode

This bit determines the state of the CLKOUT output pin.

0 = CLKOUT buffer is active (normal operation, default)

1 = CLKOUT buffer is in 3-state mode

Bits 2:0 CLKDIV[2:0]: Clock divider ratio

These bits set the ratio of the clock divider and determine the frequency of CLKOUT relative to the input clock frequency.

Table 8 shows the clock divider ratio settings.

Table 8. Clock Divider Ratio Settings

CLKDIV[2:0]	DIVIDER RATIO	INPUT CLOCK FREQUENCY RANGE
000	Divide-by-2	8 MHz to 12 MHz ⁽¹⁾
001	Do not use	Do not use
010	Divide-by-4	16 MHz to 24 MHz ⁽¹⁾
011	Divide-by-6	24 MHz to 36 MHz
100	Divide-by-8	32 MHz to 48 MHz
101	Divide-by-12	48 MHz to 60 MHz
110	Do not use	Do not use
111	Divide by 1 (2)	4 MHz to 6 MHz

⁽¹⁾ These frequency ranges can be used when generating the clock using the crystal.

⁽²⁾ When using divide-by-1, the external clock should have a duty cycle between 48% to 52%.

Figure 124. PDNCYCLESTC: PDNCYCLESTC Register (Address = 32h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		PDNCYCL	ESTC[15:0]	
11	10	9	8	7	6	5	4	3	2	1	0
					PDNCYCL	ESTC[15:0]					

Bits 23:16 Must be 0

Bits 15:0 PDNCYCLESTC[15:0]: Dynamic (cycle-to-cycle) power-down start count

The contents of this register can be used to position the start of the PDN_CYCLE signal with respect to the pulse repetition period (PRP). The count is specified as the number of cycles of CLKOUT. If the dynamic power-down feature is not required, then do not program this register.

Figure 125. PDNCYCLEENDC: PDNCYCLEENDC Register (Address = 33h, Reset Value = 0000h)

23	22	21	20	19	18	17	16	15	14	13	12
0	0	0	0	0	0	0	0		PDNCYCLE	ENDC[15:0]]
11	10	9	8	7	6	5	4	3	2	1	0
					PDNCYCLE	ENDC[15:0]				

Bits 23:16 Must be 0

Bits 15:0 PDNCYCLEENDC[15:0]: Dynamic (cycle-to-cycle) power-down end count

The contents of this register can be used to position the end of the PDN_CYCLE signal with respect to the pulse repetition period (PRP). The count is specified as the number of cycles of CLKOUT. If the dynamic power-down feature is not required, then do not program this register.

9 Application and Implementation

9.1 Application Information

The AFE4403 is ideally suited as an analog front-end for processing PPG (photoplethysmography) signals. The information contained in PPG signals can be used for measuring SPO2 as well as for monitoring heart rate. The high dynamic range of the device enables measuring SPO2 with a high degree of accuracy, even under conditions of low perfusion (ac:dc ratio). An SPO2 measurement system involves two different wavelength LEDs: usually Red and IR. By computing the ratio of the ac:dc at the two different wavelengths, SPO2 can be calculated. Heart rate monitoring systems can also benefit from the high dynamic range of the AFE4403, which enables a high-fidelity pulsating signal to be captured, even in cases where the signal strength is low.

9.2 Typical Application

Device connections in a typical application is shown in Figure 126. The schematic shows a cabled application in which the LEDs and photodiode are connected to the device through a cable. However, in an application without cables, the LEDs and photodiode can be directly connected to the TXP, TXN, TX3, INP, and INN pins directly.

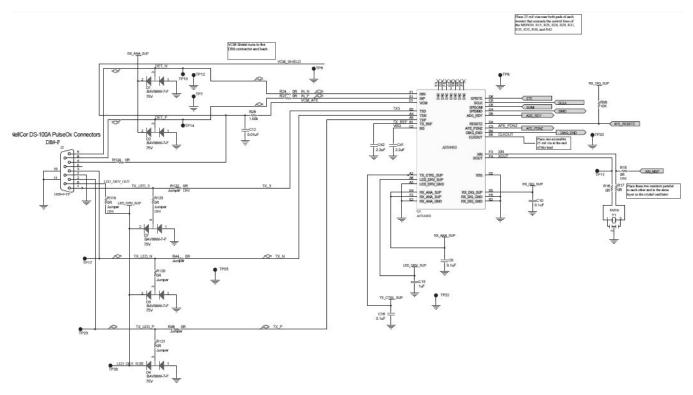


Figure 126. Schematic

9.2.1 Design Requirements

An SPO2 application usually involves a Red LED and IR LED. In addition, a heart rate monitoring application can use a different wavelength LED, such as a Green LED. The LEDs can be connected either in the common anode configuration or H-bridge configuration to the TXP, TXN pins. The LED connected to the TX3 pin can only be connected in the common anode configuration.

Typical Application (continued)

9.2.2 Detailed Design Procedure

Refer to LED Configurations for different ways to connect the LEDs to the TXP, TXN, and TX3 pins. The photodiode (shown in Figure 127) receives light from both the Red and IR phases and usually has good sensitivities at both these wavelengths.

Figure 127. Photodiode

The photodiode connected as shown in Figure 127 operates in zero bias because of the negative feedback from the transimpedance amplifier. The signal current generated by the photodiode is converted into a voltage by the transimpedance amplifier, which has a programmable transimpedance gain. The rest of the signal chain then presents a voltage to the ADC. The full-scale output of the transimpedance amplifier is ±1 V and the full-scale input to the ADC is ±1.2 V. An automatic gain control (AGC) loop can be used to set the target dc voltage at the ADC input to approximately 50% of its full-scale. Such an AGC loop can control a combination of the LED current and TIA gain to achieve this target value.

9.2.3 Application Curves

This section outlines the trends seen in the *Typical Characteristics* curves from an application perspective.

Figure 5 illustrates the receiver currents in external clock mode with CLKOUT tri-stated. The curve in Figure 5 are taken without the dynamic power-down feature enabled, so much lower currents can be achieved using the dynamic power-down feature. Enabling the crystal mode or removing the CLKOUT tri-state increases the receiver currents from the values depicted in the curve.

Figure 6 illustrates the transmitter currents with a zero LED current setting. The average LED current can be computed based on the value of the PRF and LED pulse durations, and can be added to the LED_DRV_SUP current described in Figure 6.

Figure 7 illustrates the total receiver current (analog plus digital supply) for different clock divider ratios. For each clock divider ratio, the external clock frequency is swept in frequency such that the divided clock changes between 3 MHz to 7 MHz. Note however that the supported range for the divided clock is 4 MHz to 6 MHz at each division ratio. Also, the external clock should be limited to be between 4 MHz to 60 MHz.

Figure 8 illustrates the power savings arising out of the dynamic power-down mode. This mode can be set by defining the start and end points for the signal PDN_CYCLE within the pulse repetition period. In Figure 8, the LED pulse durations are chosen to be 100 μ s and the conversions are also chosen to be 100 μ s wide. Thus, the entire active period fits in 500 μ s. With the timing margins for t_1 and t_2 indicated in Figure 67, the PDN_CYCLE pulse spans the rest of the pulse repetition period. As PRF reduces, the duty cycle of the PDN_CYCLE pulse (as a fraction of the pulse repetition period) increases, which is the reason for the power reduction at lower PRFs as seen in Figure 8.

Figure 9 illustrates the power savings as a function of the PDN_CYCLE duration at a fixed PRF of 100 Hz. A 100-Hz PRF corresponds to a period of 10 ms. Figure 9 indicates the PDN_CYCLE duration swept from 0 ms to 9 ms. With higher durations of PDN_CYCLE, the receiver power reduces.

Figure 10 illustrates the baseband response of the switched RC filter for a 5% and 25% duty cycle. When the duty cycle reduces, the effective bandwidth of the filter reduces.

Typical Application (continued)

Figure 128 shows the SNR of the signal chain as a function of the output voltage level. The data are taken by looping back the transmitter outputs to the receiver inputs using an external op amp that converts the transmitter voltage to a receiver input current. The loopback op amp and external resistors are an extra source of noise in this measurement, so the actual noise levels are higher than the total noise of the transmitter plus the receiver. The SNR in this curve (and other curves) is expressed in terms of dBFS, where the full-scale of the channel is used as the reference level. Because the valid operating range of the signal chain is ±1 V, a full-scale of 2 V is used for converting the output noise to a dBFS number. %FS refers to the percentage of the output level as a function of the positive full-scale. For example, a 50 %FS curve corresponds to the case where the output level is 0.5 V. Also, the total noise in this curve is the total integrated noise in the digital output. All noise is contained in the Nyquist band, which extends from -PRF / 2 to PRF / 2.

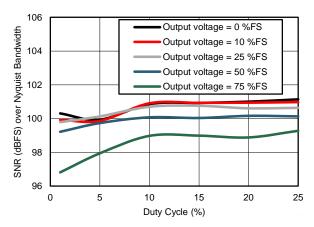


Figure 128. SNR over Nyquist Bandwidth vs Duty Cycle (Input Current with Tx-Rx Loopback)

Figure 129 is a representation of the same data as Figure 10. However, the noise is represented in terms of the input-referred noise current in pArms. By multiplying this number with the TIA gain setting (500 k in this case), the output noise voltage can be computed.

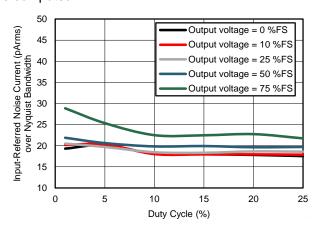


Figure 129. Input-Referred Noise Current over Nyquist Bandwidth vs Duty Cycle (Input Current with Tx-Rx Loopback)

Figure 13 illustrates the SNR from the receiver as a function of the sampling duty cycle (which is the sampling pulse duration referred to the pulse repetition period) for different settings of TIA gain. This curve is taken at 100-Hz PRF. The maximum duty cycle is limited to 25%. A lower sampling duty cycle also means a lower LED pulse duration duty cycle, which results in power saving.

Typical Application (continued)

Figure 14 illustrates the input-referred noise corresponding to Figure 13. Figure 15 and Figure 16 illustrate the SNR and input-referred noise current in a 0.1-Hz to 20-Hz band for the LED-ambient data. By performing a digital ambient subtraction, the low-frequency noise in the signal chain can be significantly attenuated. The noise levels in the bandwidth of interest are lower than the noise over the full Nyquist bandwidth. For a PPG signal, the signal band of interest is usually less than 10 Hz. By performing some digital low-pass filtering in the processor, this noise reduction can be achieved. Figure 17 and Figure 18 illustrate the noise reduction from ADC averaging. TI therefore recommends setting the number of ADC averages to the maximum allowed at a given PRF. Figure 19 and Figure 20 illustrate the noise at different PRFs over a 20-Hz bandwidth. At a higher PRF, the 20-Hz noise band is a smaller fraction of the Nyquist band. Thus, noise is lower at higher PRFs in these figures. Figure 21 and Figure 22 illustrate the noise at different PRFs over a 20-Hz bandwidth with dynamic power-down mode enabled. The active window remains as 500 µs and all samples and conversions are performed at this time. For the rest of the period, the device is in dynamic power-down with the t1 and t2 values as described in Figure 67. Again, the noise reduces with higher PRF. Figure 23 and Figure 24 illustrate the noise as a function of the PDN_CYCLE duration varied from 0 ms to 9 ms, with the active duration (available for conversion) occupying the rest of the period. With higher PDN_CYCLE durations, the number of allowed ADC averages reduces, ehich explains the slight increase in noise at higher PDN CYCLE durations. Figure 25 and Figure 26 illustrate the noise as a function of temperature over a 20-Hz bandwidth. The measurements are performed with a transmitreceive loopback as explained earlier. The input current is maintained at 1 µA. Thus, for 250-k gain setting, the output voltage is 0.5 V and for a 500-k gain setting, the output voltage is 1 V. Figure 27 and Figure 28 illustrate the noise reduction using additional gain in stage 2. Figure 29 shows the noise as a function of the internal (divided) clock frequency. The external clock is varied from 7 MHz to 14 MHz with a clock division ratio of 2. This range of external clock results in the internal clock varying from 3.5 MHz to 7 MHz. Out of this range, 4 MHz to 6 MHz is the allowed range for the internal (divided) clock at all clock division ratios. Figure 30 illustrates the deviation in the measured LED current with respect to the calculated current when the LED current code is swept from 0 to 255 in steps of 1.

Figure 31 and Figure 32 illustrate the transmitter+receiver noise (in external loopback mode) as a function of the TX_REF voltage setting. At lower TX_REF voltages, there is a slight increase in the transmitter noise. This increase is not very apparent from the curves because the transmitter noise is at a level much lower than the total noise. Figure 33 illustrates the transmitter current as a function of the current setting code. Figure 34 illustrates the spread of the transmitter current taken across a large number of devices for the same current setting. Figure 35 illustrates how the LED current changes linearly with the TX_REF voltage for a fixed code.

10 Power Supply Recommendations

The AFE4403 has two sets of supplies: the receiver supplies (RX_ANA_SUP, RX_DIG_SUP) and the transmitter supplies (TX_CTRL_SUP, LED_DRV_SUP). The receiver supplies can be between 2.0 V to 3.6 V, whereas the transmitter supplies can be between 3.0 V to 5.25 V. Another consideration that determines the minimum allowed value of the transmitter supplies is the forward voltage of the LEDs being driven. The current source and switches inside the AFE require voltage headroom that mandates the transmitter supply to be a few hundred millivolts higher than the LED forward voltage. TX_REF is the voltage that governs the generation of the LED current from the internal reference voltage. Choosing the lowest allowed TX_REF setting reduces the additional headroom required but results in higher transmitter noise. Other than for the highest-end clinical SPO2 applications, this extra noise resulting from a lower TX_REF setting can be acceptable.

Consider a design where the LEDs are meant to be used in common anode configuration with a current setting of 50 mA. Assume that the LED manufacturer mentions the highest forward voltage of the LEDs is 2.5 V at this current setting. Further, assume that the TX_REF voltage is set to 0.5 V. The voltage headroom required in this case is 1 V. Thus, the LED_DRV_SUP must be driven with a voltage level greater than or equal to 3.5 V (2.5 V plus 1 V).

LED_DRV_SUP and TX_CTRL_SUP are recommended to be tied together to the same supply (between 3.0 V to 5.25 V). The external supply (connected to the common anode of the two LEDs) must be high enough to account for the forward drop of the LEDs as well as the voltage headroom required by the current source and switches inside the AFE. In most cases, this voltage is expected to fall below 5.25 V; thus the external supply can be the same as LED_DRV_SUP. However, there may be cases (for instance when two LEDs are connected in series) where the voltage required on the external supply is higher than 5.25 V. Such a case must be handled with care to ensure that the voltage on the TXP and TXN pins remains less than 5.25 V and never exceeds the supply voltage of LED_DRV_SUP, TX_CTRL_SUP by more than 0.3 V.

Many scenarios of power management are possible.

Case 1: The LED forward voltage is such that a voltage of 3.3 V is acceptable on LED_DRV_SUP. In this case, a single 3.3-V supply can be used to drive all four pins (RX_ANA_SUP, RX_DIG_SUP, TX_CTRL_SUP, LED_DRV_SUP). Care should be taken to provide some isolation between the transmit and receive supplies because LED_DRV_SUP carries the high-switching current from the LEDs.

Case 2: A low-voltage supply of 2.2 V is available in the system. In this case, a boost converter can be used to derive the voltage for LED_DRV_SUP, as shown in Figure 130.

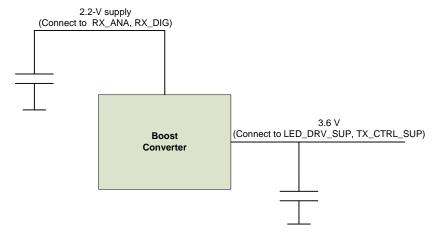


Figure 130. Boost Converter

The boost converter requires a clock (usually in the megahertz range) and there is usually a ripple at the boost converter output at this switching frequency. While this frequency is much higher than the signal frequency of interest (which is at maximum a few tens of hertz around dc), a small fraction of this switching noise can possibly alias to the low-frequency band. Therefore, TI strongly recommends that the switching frequency of the boost converter be offset from every multiple of the PRF by at least 20 Hz. This offset can be ensured by choosing the appropriate PRF.

Case 3: In cases where a high-voltage supply is available in the system, a buck converter or an LDO can be used to derive the voltage levels required to drive RX_ANA and RX_DIG, as shown in Figure 131.

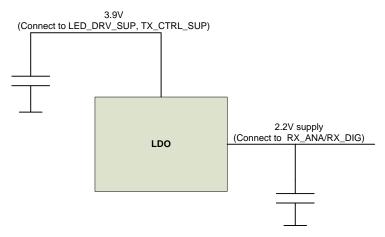


Figure 131. Buck Converter or an LDO

10.1 Power Consumption Considerations

The lowest power consumption mode of the AFE4403 corresponds to the following settings:

- PRF = 62.5 Hz,
- External clock mode (XTALDIS = 1), and
- CLKOUT tri-stated (CLKOUT_TRI = 1).

With the above settings, the currents taken from the supplies are as shown in Table 9. The LED driver current is with zero LED current setting.

SUPPLY	VOLTAGE (V)	CURRENT (μA)
RX_ANA	2	490
RX_DIG	2	155
TX_CTRL_SUP	3	15
LED_DRV_SUP	3	55

Table 9. Current Consumption in Normal Mode

Enabling the crystal (XTALDIS = 0) leads to an additional power consumption that can be estimated to be approximately equal to $(2 \times C_{sh} + 0.5 \times C1 + 0.5 \times C2) \times 0.4 \times f_{XTAL}$, where C_{sh} is the effective shunt capacitance of the crystal, C1 and C2 are the capacitances from the XIN and XOUT pins to ground, and f_{XTAL} is the frequency of the crystal.

Removing the CLKOUT tri-state leads to an additional power consumption of approximately $C_{LOAD} \times V_{SUP} \times f$, where V_{SUP} is the supply voltage of RX_DIG in volts, f = 4 MHz, $C_{LOAD} =$ the capacitive load on the CLKOUT pin + 2 pF.

The power consumption can be reduced significantly by using the dynamic power-down mode. An illustration of this mode is shown in Table 10, where:

- PRF = 62.5 Hz,
- Dynamic power-down is active for 14.7 ms every pulse repetition period,
- All four bits (DYNAMIC[4:1]) are set to 1,
- External clock mode (XTALDIS = 1), and
- CLKOUT is tri-stated (CLKOUT_TRI = 1).

Table 10. Current Consumption in Dynamic Power-Down Mode

SUPPLY	VOLTAGE (V)	CURRENT (μA)
RX_ANA	2	150
RX_DIG	2	155
TX_CTRL_SUP	3	5
LED_DRV_SUP	3	5

11 Layout

11.1 Layout Guidelines

Some key layout guidelines are mentioned below:

- 1. TXP, TXN, and TX3 are fast-switching lines and should be routed away from sensitive reference lines as well as from the INP, INN inputs.
- 2. If the INP, INN lines are required to be routed over a long trace, TI recommends that VCM be used as a shield for the INP, INN lines.
- 3. The device can draw high-switching currents from the LED_DRV_SUP pin. Therefore, TI recommends having a decoupling capacitor electrically close to the pin.

11.2 Layout Example

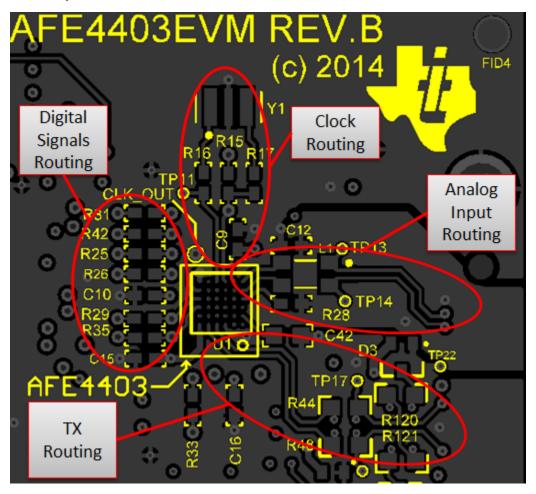


Figure 132. Example Layout

12 器件和文档支持

12.1 Trademarks

SPI is a trademark of Motorola.

All other trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

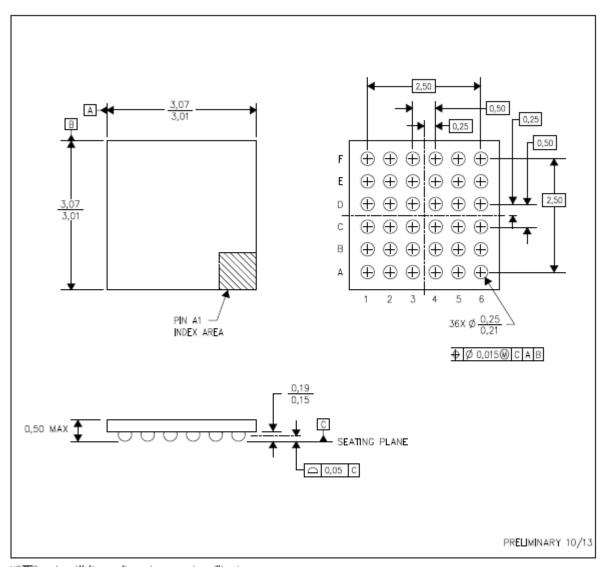
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.3 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

13 机械封装和可订购信息


以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

13.1 YZP 机械制图

AFE4403YZP (S-XBGA-N36)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. NanoFree™ package configuration.

Figure 133. 机械制图

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
AFE4403YZPR	ACTIVE	DSBGA	YZP	36	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-20 to 70	AFE4403	Samples
AFE4403YZPT	ACTIVE	DSBGA	YZP	36	250	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-20 to 70	AFE4403	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

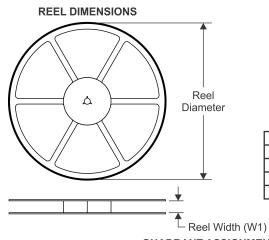
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

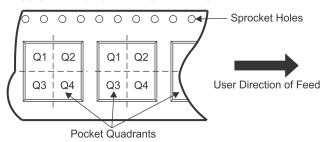
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



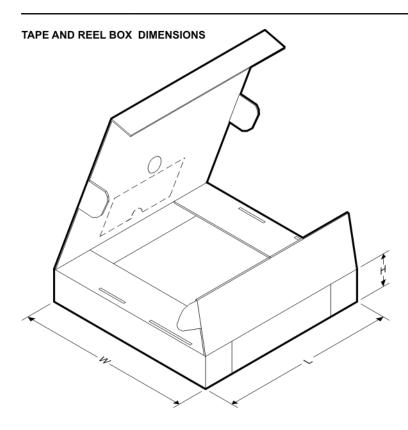
10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Oct-2015


TAPE AND REEL INFORMATION

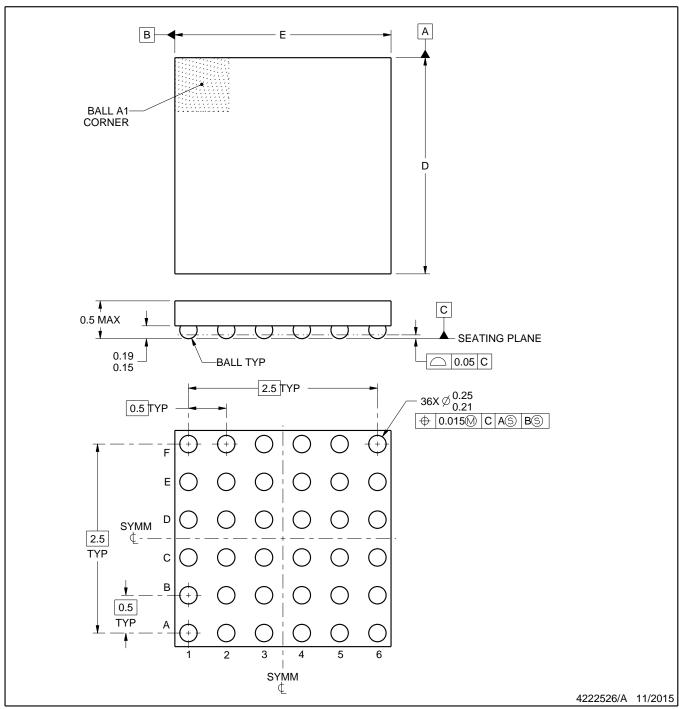
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
AFE4403YZPR	DSBGA	YZP	36	3000	180.0	8.4	3.16	3.16	0.71	4.0	8.0	Q1
AFE4403YZPT	DSBGA	YZP	36	250	180.0	8.4	3.16	3.16	0.71	4.0	8.0	Q1

www.ti.com 10-Oct-2015

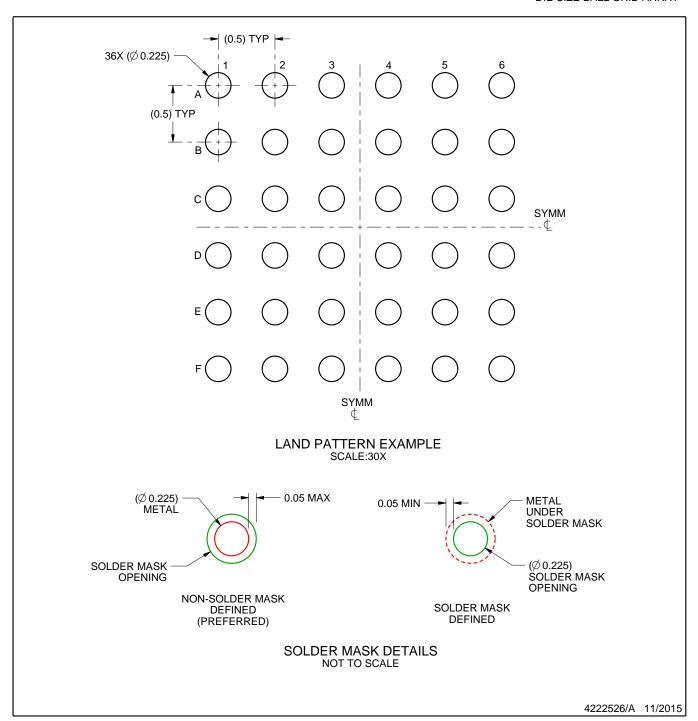


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AFE4403YZPR	DSBGA	YZP	36	3000	182.0	182.0	20.0
AFE4403YZPT	DSBGA	YZP	36	250	182.0	182.0	20.0

DIE SIZE BALL GRID ARRAY

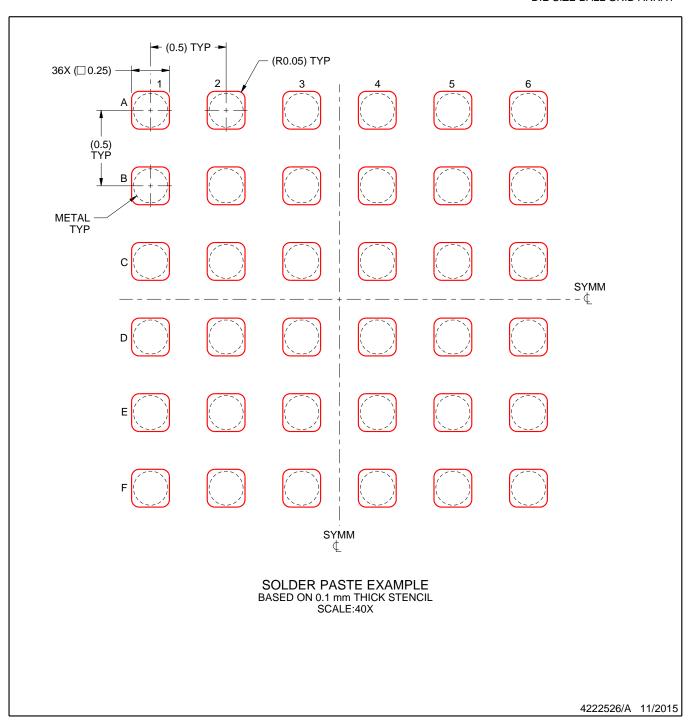
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司