

SLLS833A - MAY 2007 - REVISED APRIL 2013

DUAL DIFFERENTIAL DRIVERS AND RECEIVERS

Check for Samples: SN7534050, SN7534051

FEATURES

- Meet or Exceed Standards TIA/EIA-422-B and ITU Recommendation V.11
- Operate From Single 5-V Power Supply
- Driver Positive and Negative Current Limiting
- Receiver Input Sensitivity: ±200mV
- Receiver Input Impedance: 12 kΩ Min
- Driver 3-State Outputs
- Receiver 3-State Outputs (SN7534050 Only)

$\begin{array}{c ccccc} 1B & 1 & 16 & V_{CC} \\ 1A & 2 & 15 & 1D \\ 1R & 3 & 14 & 1Y \\ \hline RE & 4 & 13 & 1Z \\ 2R & 5 & 12 & DE \\ 2A & 6 & 11 & 2Z \\ 2B & 7 & 10 & 2Y \\ \hline \end{array}$	SN753405	0N (TOF			PACKAGE
	1A [1R [RE [2R [2A [3 4 5 6	σ	15 14 13 12 11	1D 1Y 1Z DE 2Z

E SN7534051...N OR NS PACKAGE (TOP VIEW)

	(IC		= vv)	
1B 1A	1 2	υ	16 15	V _{CC} 1D
1R	3		14] 1Y
1DE	4		13	1Z
2R	5		12	2DE
2A	6		11] 2Z 2Y
2B	7		10	2Y
GND	8		9	2D

DESCRIPTION

The SN7534050 and SN7534051 dual differential drivers and receivers are monolithic integrated circuits designed to meet the requirements of ANSI standards TIA/EIA-422-B and ITU Recommendations V.11.

The driver outputs provide limiting for both positive and negative currents and thermal shutdown protection from line fault conditions on transmission bus line.

The SN7534050 combines dual 3-state differential drivers and dual 3-state differential input receivers. The drivers and receivers have active-high and active-low enables, respectively which can be externally connected together to function as direction control. SN7534051 drivers each have an individual active-high enable.

		ORDERING INFO		
T _A	PACKA	GE ^{(1) (2)}	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube of 25	SN7534050N	SN7534050N
	SOP – NS	Tube of 50	SN7534050NS	SN7534050
–20°C to 85°C		Reel of 2000	SN7534050NSR	SN7534050
-20 C 10 85 C	PDIP – N	Tube of 25	SN7534051N	SN7534051N
	Tube of 50		SN7534051NS	SN7534051
	SOP – NS	Reel of 2000	SN7534051NSR	SN7534051

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLES

Table 1. SN7534050, SN7534051 Each Driver⁽¹⁾

INPUT	ENABLE	OUT	PUTS
D	DE	Y	z
Н	Н	Н	Г
L	Н	L	Н
Х	L	Z	Z

(1) H = high level, L = low level,
 X = irrelevant, Z = high impedance (off)

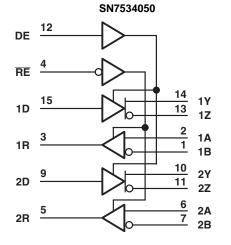
Table 2. SN7534050 Each Receiver⁽¹⁾

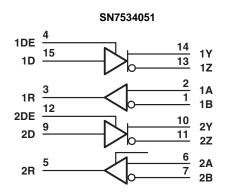
DIFFERENTIAL INPUTS, A-B	EN <u>AB</u> LE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \leq -0.2 V$	L	L
X	н	Z

(1) H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

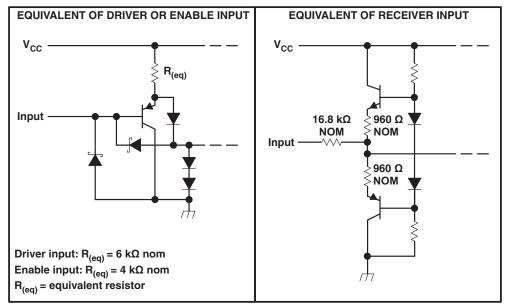
Table 3. SN7534051 Each Receiver⁽¹⁾

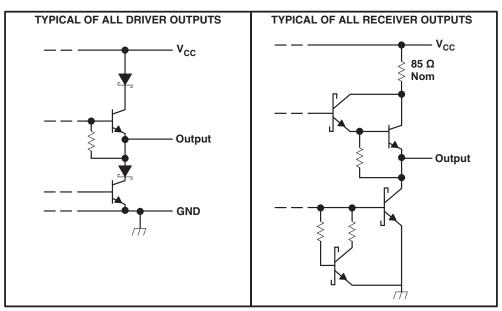
DIFFERENTIAL INPUTS, A–B	OUTPUT R
$V_{ID} \ge 0.2 V$	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
$V_{ID} \leq -0.2 V$	L


(1) H = high level, L = low level, ? = indeterminate



SLLS833A-MAY 2007-REVISED APRIL 2013


www.ti.com


SCHEMATIC OF INPUTS

All resistor values are nominal.

SLLS833A - MAY 2007 - REVISED APRIL 2013

SCHEMATIC OF OUTPUTS

All resistor values are nominal.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V		
VI	Input voltage	DE, RE, D inputs		7	V
Vi	Receiver input voltage	A or B inputs		±25	V
V _{ID}	Receiver differential output voltage ⁽³⁾			±25	V
Vo	Driver output voltage range		-10	15	V
I _{OL}	Receiver low-level output current			50	mA
0		N package		66	0000
θ_{JA}	Package thermal impedance ⁽⁴⁾	NS package		68	°C/W
	Operating free-air temperature range		-20	85	°C
T _{stg}	Storage temperature range		-65	150	°C
	Lead temperature, 1.6 mm (1/16 in) from case for 10 s			260	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages, except differential input voltage, are with respect to the network GND.

(3) Differential input voltage is measured at the noninverting terminal, with respect to the inverting terminal.

(4) The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SLLS833A-MAY 2007-REVISED APRIL 2013

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.75	5	5.25	V
VIH	High-level input voltage	DE, <u>RE,</u> D	2			V
VIL	Low-level input voltage	DE, RE, D			0.8	V
V _{IC}	Common-mode input voltage ⁽¹⁾	Receiver			±7	V
V_{ID}	Differential input voltage	Receiver			±12	V
	Lick lovel output ourrest	Driver			40	mA
IOH	High-level output current Receiver	Receiver			-400	μA
I _{OL} Low-level output current	Driver			-40	0	
	Low-level output current Receiver				16	mA
T _A	Operating free-air temperature		-20		85	°C

(1) Refer to TIA/EIA-422-B for exact conditions.

DRIVER SECTION

Electrical Characteristics

over recommended supply voltage and operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage	$V_{IH} = 2 V, V_{IL} = 0.8$	$V_{IH} = 2 V, V_{IL} = 0.8 V, I_{OH} = -20 mA$		3.7		V
V _{OL}	Low-level output voltage	$V_{IH} = 2 V, V_{IL} = 0.8$	$V_{IH} = 2 V, V_{IL} = 0.8 V, I_{OL} = 20 mA$		1.1		V
V _{OD1}	Differential output voltage	$I_0 = 0 \text{ mA}$	$I_0 = 0 \text{ mA}$			6	V
V _{OD2}	Differential output voltage ⁽²⁾	$R_L = 100 \Omega$,	See Figure 1	2			V
ΔV_{OD}	Change in magnitude of differential output voltage ⁽²⁾	$R_L = 100 \Omega$,	See Figure 1			±0.4	V
V _{OC}	Common-mode output voltage ⁽²⁾	$R_L = 100 \Omega$,	See Figure 1			±3	V
ΔV _{OC}	Change in magnitude of differential common-mode voltage ⁽²⁾	R _L = 100 Ω,	See Figure 1			±0.4	V
	\mathbf{O} that is the second sec	N 0.11	V _O = 6 V			100	
I _{off}	Output current with power off ⁽²⁾	$V_{CC} = 0 V$	V _O = -0.25 V			-100	μA
I _{OZ}	High-impedance-state output current	$V_0 = -0.25 \text{ V to } 6 \text{ V}$	$V_{\rm O} = -0.25$ V to 6 V			±100	μA
I _{IH}	High-level input current	V ₁ = 2.7 V				20	μA
IIL	Low-level input current	$V_{I} = 0.4 V$				-100	μA
I _{OS}	Short-circuit output current ^{(2) (3)}	$V_{O} = V_{CC}$ or GND		-30		-150	mA
	Supply surrent (total postogo)	Nolood	Output enabled		80	110	~ ^
I _{CC}	Supply current (total package)	No load	Output disabled		50	80	mA

All typical values are at $V_{CC} = 5$ V and $T_A = 25$ °C. Refer to TIA-EIA-422-B for exact conditions. (1)

(2)

Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. (3)

SLLS833A-MAY 2007-REVISED APRIL 2013

www.ti.com

Switching Characteristics

 $V_{CC} = 5 V, C_1 = 50 pF, T_A = 25^{\circ}C$

$5^{\circ}, 0^{\circ}_{L} = 50^{\circ} \text{pr}, 1^{\circ}_{A} = 25^{\circ} \text{O}$					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Differential output delay time	R_L = 100 Ω , C_L = 50 pF, See Figure 3		20	25	ns
Differential output transition time	$R_L = 100 \ \Omega$, $C_L = 50 \ pF$, See Figure 3		27	35	ns
Propagation delay time, low- to high-level output	$R_L = 27 \Omega$, See Figure 4		20	25	ns
Propagation delay time, high- to low-level output	$R_L = 27 \Omega$, See Figure 4		20	25	ns
Output enable time to high level	$R_L = 110 \Omega$, See Figure 5		80	120	ns
Output enable time to low level	$R_L = 110 \Omega$, See Figure 6		40	60	ns
Output disable time from high level	$R_L = 110 \Omega$, See Figure 5		90	120	ns
Output disable time from low level	$R_L = 110 \Omega$, See Figure 6		30	45	ns
	PARAMETER Differential output delay time Differential output transition time Propagation delay time, low- to high-level output Propagation delay time, high- to low-level output Output enable time to high level Output disable time from high level	PARAMETERTEST CONDITIONSDifferential output delay time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 3Differential output transition time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 3Propagation delay time, low- to high-level output $R_L = 27 \Omega$, See Figure 4Propagation delay time, high- to low-level output $R_L = 27 \Omega$, See Figure 4Output enable time to high level $R_L = 110 \Omega$, See Figure 5Output enable time to low level $R_L = 110 \Omega$, See Figure 6Output disable time from high level $R_L = 110 \Omega$, See Figure 5	PARAMETERTEST CONDITIONSMINDifferential output delay time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 3Differential output transition time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 3Propagation delay time, low- to high-level output $R_L = 27 \Omega$, See Figure 4Propagation delay time, high- to low-level output $R_L = 27 \Omega$, See Figure 4Output enable time to high level $R_L = 110 \Omega$, See Figure 5Output disable time from high level $R_L = 110 \Omega$, See Figure 6	PARAMETERTEST CONDITIONSMINTYPDifferential output delay time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 320Differential output transition time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 327Propagation delay time, low- to high-level output $R_L = 27 \Omega$, See Figure 420Propagation delay time, high- to low-level output $R_L = 27 \Omega$, See Figure 420Output enable time to high level $R_L = 110 \Omega$, See Figure 580Output disable time from high level $R_L = 110 \Omega$, See Figure 590	PARAMETERTEST CONDITIONSMINTYPMAXDifferential output delay time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 32025Differential output transition time $R_L = 100 \Omega$, $C_L = 50 pF$, See Figure 32735Propagation delay time, low- to high-level output $R_L = 27 \Omega$, See Figure 42025Output enable time to high level $R_L = 27 \Omega$, See Figure 42025Output enable time to high level $R_L = 110 \Omega$, See Figure 580120Output disable time from high level $R_L = 110 \Omega$, See Figure 54060Output disable time from high level $R_L = 110 \Omega$, See Figure 590120

RECEIVER SECTION

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONE	DITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{IT+}	Positive-going input threshold voltage, diff	erential input					0.2	V
V_{IT-}	Negative-going input threshold voltage, dif	ferential input			-0.2 ⁽²⁾			V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})					50		mV
VIK	Input clamp voltage, RE	SN7534050	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage		$V_{\text{ID}} = 200 \text{ mV},$ $I_{\text{OH}} = -400 \mu\text{A},$	See Figure 2	2.7			V
V	Low lovel output veltage		V _{ID} = -200 mV,	$I_{OL} = 8 \text{ mA}$			0.45	V
V _{OL}	Low-level output voltage		See Figure 2	I _{OL} = 16 mA			0.5	v
I _{OZ}	High-impedance-state output current	SN7534050	$V_{\rm O}$ = 0.4 V to 2.4 V				±20	μA
	Line input ourrent		Other input at 0 V $\frac{V_{I} = 10 V}{V_{I} = -10 V}$				1.5	~ ^
II.	Line input current						-2.5	mA
I _{IH}	High-level enable input current, RE	SN7534050	V _{IH} = 2.7 V				20	μA
IIL	Low-level enable input current, RE	SN7534050	$V_{IL} = 0.4 V$				-100	μA
r _i	Input resistance				12			kΩ
I _{OS}	Short circuit output current				-15		-85	mA
I _{CC}	Supply current (total package)		No load, enabled			80	110	mA

(1) All typical values are at $V_{CC} = 5$ V and $T_A = 25^{\circ}C$.

(2) The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels.

Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	· · · · · · · · · · · · · · · · · · ·	(,					
	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}			$V_{ID} = 1.5 V, C_L = 15 pF,$ See Figure 7		20	35	ns	
t _{PHL}			$V_{ID} = 1.5 V, C_L = 15 pF,$ See Figure 7		22	35	ns	
t _{PZH}	Output enable time to high level	SN7534050		$C_L = 15 \text{ pF}$, see Figure 8		17	25	ns
t _{PZL}	Output enable time to low level	SN7534050		C _L = 15 pF, See Figure 8		20	27	ns
t _{PHZ}	Output disable time from high level	SN7534050		C _L = 15 pF, See Figure 8		25	40	ns
t _{PLZ}	Output disable time from low level	SN7534050		C _L = 15 pF, See Figure 8		30	40	ns

SLLS833A - MAY 2007 - REVISED APRIL 2013

PARAMETER MEASUREMENT INFORMATION

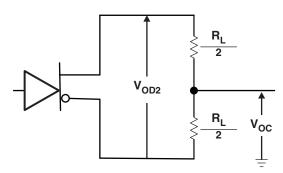


Figure 1. Driver Test Circuit, V_{OD} and V_{OC}

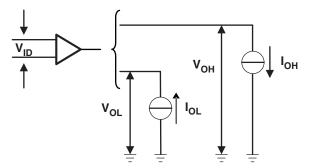
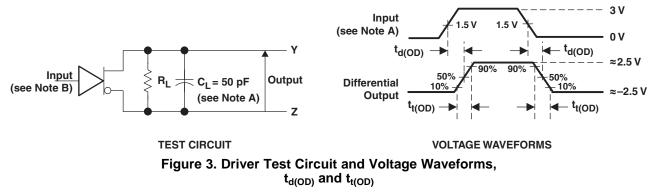



Figure 2. Receiver Test Circuit, $V_{\rm OH}$ and $V_{\rm OL}$

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r = t_r \leq 6 ns.

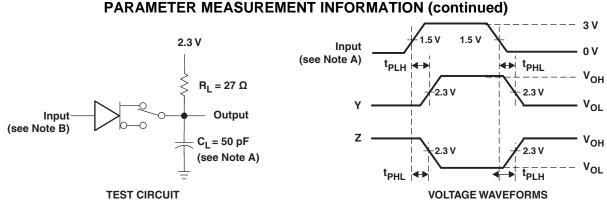
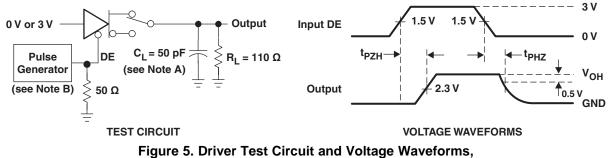
- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r = t_r \leq 6 ns.

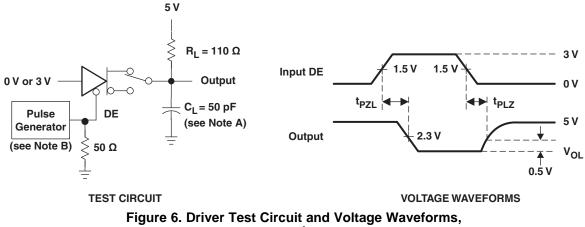
SN7534050, SN7534051

Texas Instruments

www.ti.com

SLLS833A - MAY 2007 - REVISED APRIL 2013

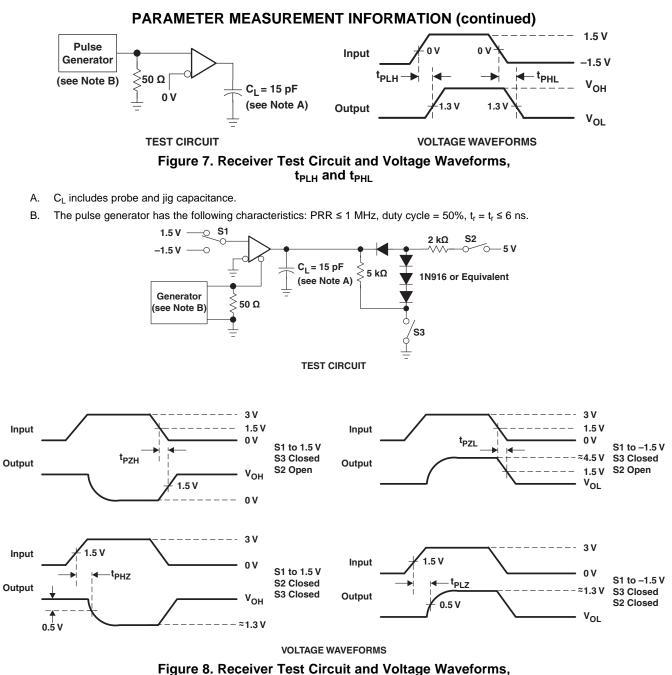




Figure 4. Driver Test Circuit and Voltage Waveforms, t_{PLH} and t_{PHL}

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r = t_r \leq 6 ns.

t_{PZH} and t_{PHZ}

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r = t_r \leq 6 ns.


t_{PZL} and t_{PLZ}

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r = t_r \leq 6 ns.

8

SLLS833A - MAY 2007 - REVISED APRIL 2013

t_{PZH}, t_{PZL}, t_{PHZ}, t_{PLZ} (SN7534050)

SLLS833A-MAY 2007-REVISED APRIL 2013

REVISION HISTORY

Changes from Original (May 2007) to Revision A						
•	Updated document format from QS to DocZone.	. 1				
•	Updated ORDERING INFORMATION table.	. 1				

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN7534050N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 85	SN7534050N	Samples
SN7534050NS	ACTIVE	SO	NS	16	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	SN7534050	Samples
SN7534050NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-20 to 85	SN7534050	Samples
SN7534051N	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-20 to 85	SN7534051N	Samples
SN7534051NS	ACTIVE	SO	NS	16	50	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-20 to 85	SN7534051	Samples
SN7534051NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-20 to 85	SN7534051	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

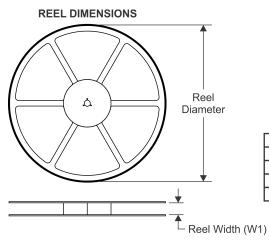
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

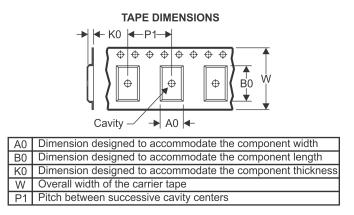
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

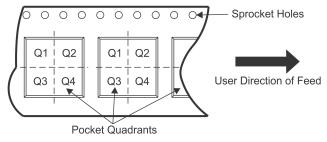
10-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

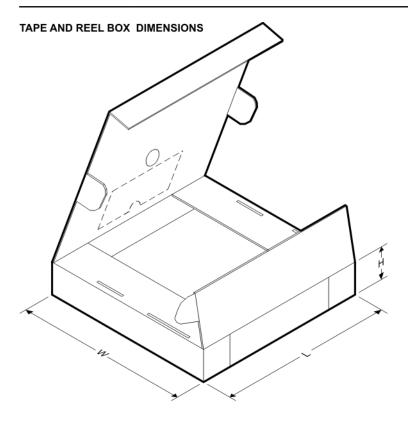

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN7534050NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN7534051NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN7534050NSR	SO	NS	16	2000	853.0	449.0	35.0
SN7534051NSR	SO	NS	16	2000	853.0	449.0	35.0

MECHANICAL DATA

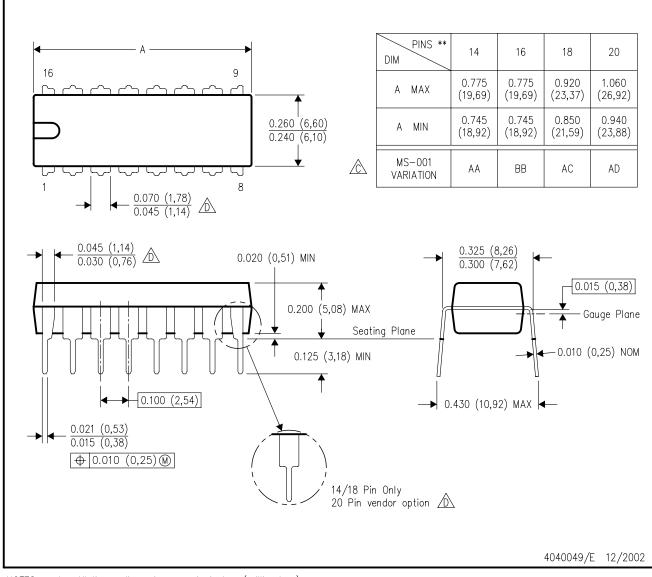
PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated