

Sample &

Buy

UC1856-SP

ZHCSCE1-APRIL 2014

UC1856-SP 改进的电流模式脉宽调制 (PWM) 控制器

Technical

Documents

1 特性

- 与 UC1846 引脚到引脚兼容
- 从关断到输出的 65ns 延迟(典型值),以及从同步(SYNC)到输出的 50ns 延迟(典型值)
- 具有减少噪声敏感度的经改进电流感测放大器
- 支持 3V 共模范围的差分电流感测
- 针对准确死区控制的已修整振荡器放电电流
- 精确 1V 关断阀值
- 高电流双图腾柱式输出(峰值 1.5A)
- TTL 兼容振荡器 SYNC 引脚阀值
- 4kV 静电放电 (ESD) 保护

2 应用范围

- 直流-直流转换器
- 支持不同的拓扑结构:
 - 推挽、正向、半桥、全桥
- 在军用温度范围内可用(-55℃至125°C)

3 说明

Tools &

Software

UC1856 是广受欢迎的 UC1846 系列电流模式控制器 的高性能版本,并且专门用于对速度和准确度要求较高 的设计升级和全新应用。所有输入到输出延迟已被最 大限度地降低,而电流感测输出受转换率限制,以降低 噪声敏感度。已经添加快速 1.5A 峰值输出级来实现功 率场效应晶体管 (FET) 的迅速切换。

Support &

Community

2.2

当被用作一个同步输入时,低阻抗 TTL 兼容同步输出 由一个三态功能实现。

为了最大限度地降低驱动大电容负载时导致的内部噪 声,已经对内部芯片接地进行改进。这项改进,与经 改进的差分电流感测放大器组合在一起,可提高抗扰 度。

其他特性包括针对准确频率和死区时间控制的经修整振 荡器电流 (8%);一个 1V 5% 关断阀值;以及所有引脚 上的 4kV 最小静电放电 (ESD)保护。

器件信息 ⁽¹⁾	
封装	

器件名称	封装	封装尺寸
	陶瓷双列直插封 装 (CDIP) (16)	20.57mm x 7.37mm
UC 1656-5P	陶瓷扁平封装 (CFP) (16)	10.16mm x 7.1mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Texas Instruments

www.ti.com.cn

目录

1	特性		1
2	应用	范围	1
3	说明		1
4	修订	历史记录	2
5	Pin	Configuration and Functions	3
6	Spe	cifications	4
	6.1	Absolute Maximum Ratings	4
	6.2	Handling Ratings	4
	6.3	Recommended Operating Conditions	4
	6.4	Thermal Information	4
	6.5	Electrical Characteristics	5
7	Para	ameter Measurement Information	7
8	Deta	ailed Description	8
	8.1	Overview	8

	8.2	Functional Block Diagram	8
	8.3	Feature Description	8
	8.4	Device Functional Modes	12
9	Арр	lications and Implementation	13
	9.1	Application Information	13
	9.2	Typical Applications	. 13
10	Pow	ver Supply Recommendations	17
11	Lay	out	17
	11.1	Layout Guidelines	17
12	Dev	ice and Documentation Support	19
	12.1	Trademarks	19
	12.2	Electrostatic Discharge Caution	. 19
	12.3	Glossary	19
13	Mec	hanical, Packaging, and Orderable	
	Info	rmation	19

4 修订历史记录

日期	修订版本	注释
2014 年 4 月	*	最初发布版本

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
CL SS	1	I	Current limit/Soft start		
VREF	2	0	5.1V internally generated reference		
CS-	3	I	Inverting input of current sense operational amplifier		
CS+	4	I	Non-Inverting input of current sense operational amplifier		
EA+	5	I	Non-Inverting input of error amplifier		
EA-	6	I	Inverting input of error amplifier		
COMP	7	0	Output of error amplifier		
СТ	8	I	Timing capacitance. Capacitor connected from CT to ground is charged via current established by RT pin via current mirror. Output Pulse dead time is determined by the size of the capacitor during capacitor discharge time.		
RT	9	I	Determines oscillator frequency. VREF sources thru RT to create a current which is mirrored to CT pin.		
SYNC	10	I/O	Sync pin is an output under normal operation when RT is above 4.1V Sync output high. Sync pin is an input when RT pin is high and CT pin tied low.		
AOUT	11	0	Output driver (source/sink)		
GND	12	-	Ground connection		
VC	13	I	Gate drive collector supply voltage. Decouple with capacitor.		
BOUT	14	0	Output driver (source/sink)		
VIN	15	I	Input voltage decouple with capacitor		
SHUTDOWN	16	I	Shutdown threshold 1V. Voltage above threshold latches off oscillator.		

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Supply voltage			40	V
Collector supply voltage	e		40	V
Current sense inputs		-0.3	3	V
Error amplifier inputs		-0.3	V _{IN}	V
Shutdown input		-0.3	10	V
Error-amplifier output current			-5	mA
Output current,	DC		0.5	А
source or sink	Pulse (0.5 µs)		2	
Oscillator Charging cu	rrent		5	mA
Soft-start sink current			50	mA
SYNC output current			±10	mA
Junction temperature		-55	150	°C
Lead temperature (Sol	dering, 10 sec.)		300	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to Ground. Currents are positive into, negative out of the specified pin. Consult packaging section of databook for thermal/imitations and considerations of package.

6.2 Handling Ratings

		MIN	MAX	UNIT
T _{stg}	Storage temperature range	-65	150	°C

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
TJ	Operating junction temperature	-55	125	°C

6.4 Thermal Information⁽¹⁾

	UC1856-SP		
		16 PIN	UNIT
R _{0JC(bottom)}	J package	7.3	°C M/
	HKT package	2.9	0/10

(1) HKT: Computational fluid dynamics (CFD) model of 16 pin HKT package to Mil Std 883 Method 1012.1 standard. 16/J: Curve based on CFD models correlated to available physical measurement data points. Reference: http://www.sh.sc.ti.com/processpackaging/pkgchar/Tjc_by_die_size.htm

(2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE SECTION					
Output voltage	T _J = 25°C, I _O = 1 mA	5.05	5.1	5.15	V
Line regulation	V _{IN} = 8 to 40 V			20	mV
Load regulation	$I_0 = -1 \text{ mA to } -10 \text{ mA}$			15	mV
Total output variation	Line, load, and temperature	5		5.2	V
Output noise voltage	10 Hz < f < 10 kHz, T _J = 25°C		50		μV
Long-term stability	T _J = 125°C, 1000 Hrs ⁽¹⁾		5	25	mV
Short-circuit current	V _{REF} = 0 V	-25	-45	-65	mA
OSCILLATOR SECTION	I	L			
1.52.1	$T_J = 25^{\circ}C$	180	200	220	
Initial accuracy	Over operating range	170		230	kHz
Voltage stability	V _{IN} = 8 to 40 V			2%	
	$T_{J} = 25^{\circ}C, V_{CT} = 2 V$	7.5	8	8.8	
Discharge current	Over operating range, $V_{CT} = 2 V$	6.7	8	8.8	- mA
Sync output high level	I _O = -1 mA	2.4	3.6		V
Sync output low level	l _o = 1 mA		0.2	0.4	V
Sync input high level	$C_T = 0 V, R_T = V_{REF}$	2	1.5		V
Sync input low level	$C_T = 0 V, R_T = V_{REF}$		1.5	0.8	V
Sync input current	$C_T = 0 V, R_T = V_{REF}, V_{SYNC} = 5 V$		1	10	μA
Sync delay to outputs	$C_T = 0 V$, $R_T = V_{REF}$, $V_{SYNC} = 0.8$ to 2 V		50	100	ns
ERROR AMPLIFIER SECTION		<u>.</u>			
Input offset voltage	V _{CM} = 2 V			5	mV
Input bias current				-1	μA
Input offset current				500	nA
Common mode range	V _{IN} = 8 V to 40 V	0		V _{IN} -2	V
Open loop gain	$V_0 = 1.2 V$ to 3 V	80	100		dB
Unity gain bandwidth	$T_J = 25^{\circ}C$	1	1.5		MHz
CMRR	$V_{CM} = 0 V$ to 38 V, $V_{IN} = 40 V$	75	100		dB
PSRR	V _{IN} = 8 V to 40 V	80	100		dB
Output sink current	$V_{ID} = -15 \text{ mV}, V_{COMP} = 1.2 \text{ V}$	5	10		mA
Output source current	V_{ID} = 15 mV, V_{COMP} = 2.5 V	-0.4	-0.5		mA
Output high level	$V_{ID} = 50 \text{ mV}, \text{ R}_{L} \text{ (COMP)} = 15 \text{ k}\Omega$	4.3	4.6	4.9	V
Output low level	$V_{ID} = -50 \text{ mV}, \text{ R}_{L} \text{ (COMP)} = 15 \text{ k}\Omega$		0.7	1	V
CURRENT SENSE AMPLIFIER SECTION	<u>+</u>				
Amplifier gain	V _{CS} -= 0 V, CL SS Open ⁽²⁾⁽³⁾	2.5	2.75	3	V/V
Maximum differential-input signal $(V_{CS}+ - V_{CS}-)$	CL SS Open ⁽²⁾ , R _L (COMP) = 15 k Ω	1.1	1.2		V
Input offset voltage	V _{CL SS} = 0.5 V, COMP Open ⁽³⁾		5	35	mV
CMRR	$V_{CM} = 0 V \text{ to } 3 V$	60			dB
PSRR	V _{IN} = 8 V to 40 V	60			dB
Input bias current	$V_{CL SS} = 0.5 V, COMP Open^{(2)}$	-1		1	μA
Input offset current	$V_{CL SS} = 0.5 V$, COMP Open ⁽²⁾	-1		1	μA
Input common-mode range		0		3	V
Delay to outputs	V _{EA} + = VREF, EA- = 0 V CS+ - CS- = 0 V to 1.5 V		120	250	ns

This parameter, although ensured over the recommended operating conditions, is not 100% tested in production.
 Parameter measured at trip point of latch with V_{EA}+ = VREF, V_{EA}- = 0 V.
 Amplifier gain defined as:

$$G = \frac{\Delta V_{COMP}}{\Delta V_{CS} +}; \qquad \Delta V_{CS} - = 0 \text{ to } 1 \text{ V}$$

UC1856-SP

ZHCSCE1-APRIL 2014

ISTRUMENTS

EXAS

www.ti.com.cn

Electrical Characteristics (continued)

Unless otherwise stated, these specifications apply for T_A –55°C to +125°C, V_{IN} = 15 V, R_T = 10 k Ω , C_T = 1 nF, T_A = T_J .

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT LIMIT ADJUST SECTION		U		I	
Current limit offset	V_{CS} = 0 V , V_{CS} = 0V, COMP = Open ⁽⁴⁾	0.43	0.5	0.57	V
Input bias current			-10	-30	μA
SHUTDOWN PIN SECTION		L			
Threshold voltage		0.95	1	1.05	V
Input voltage range		0		5	V
Minimum latching current (I _{CL SS})	See ⁽⁵⁾	3	1.5		mA
Maximum non-latching current (I _{CL SS})	See ⁽⁶⁾		1.5	0.8	mA
Delay to outputs	V _{SHUTDOWN} = 0 V to 1 .3 V		65	110	ns
OUTPUT SECTION				k	
Collector-emitter voltage		40			V
Off-state bias current	VC = 40 V			250	μA
	I _{OUT} = 20 mA		0.1	0.5	V
Output low level	I _{OUT} = 200 mA		0.5	2.6	
	$I_{OUT} = -20 \text{ mA}$	12.5	13.2		
Output nigh level	I _{OUT} = -200 mA	12	13.1		V
Rise time	C1 = 1 nF		40	80	ns
Fall time	C1 = 1 nF		40	80	ns
UVLO low saturation	V _{IN} = 0 V, I _{OUT} = 20 mA		0.8	1.5	V
PWM SECTION		L			
Maximum duty cycle		45%	47%	50%	
Minimum duty cycle				0%	
UNDERVOLTAGE LOCKOUT SECTION					
Startup threshold			7.7	8	V
Threshold hysterisis			0.7		V
TOTAL STANDBY CURRENT				1	
Supply current			18	23	mA

(4) Parameter measured at trip point of latch with V_{EA}+ = VREF, V_{EA}- = 0 V.
(5) Current into CL SS ensued to latch circuit into shutdown state.
(6) Current into CL SS ensured not to latch circuit into shutdown state.

7 Parameter Measurement Information

Bypass caps should be low ESR and ESL type. Short E/A– and comp for unity gain testing. **The use of a ground plane is highly recommended.**

8 Detailed Description

8.1 Overview

The UC1856 is a high-performance version of the popular UC1846 series of current-mode controllers, and is intended for both design upgrades and new applications where speed and accuracy are important. All input-to-output delays have been minimized, and the current sense output is slew-rate limited to reduce noise sensitivity. Fast 1.5-A peak output stages have been added to allow rapid switching of power FETs.

8.2 Functional Block Diagram

8.3 Feature Description

UC1856 is a current mode controller, used to support various topologies such as forward, flyback, half-bridge, full bridge, push-pull configurations.

Current mode control is a two-loop system. The switching power supply inductor is hidden within the inner current control loop. This simplifies the design of the outer voltage control loop and improves power supply performance in many ways, including better dynamics. The objective of this inner loop is to control the state-space averaged inductor current, but in practice the instantaneous peak inductor current is the basis for control (switch current - equal to inductor current during the on time - is often sensed). If the inductor ripple current is small, peak inductor current control is nearly equivalent to average inductor current control.

The peak method of inductor current control functions by comparing the upslope of inductor current (or switch current) to a current program level set by the outer loop. The comparator turns the power switch off when the instantaneous current reaches the desired level. The current ramp is usually quite small compared to the programming level, especially when V_{IN} is low. As a result, this method is extremely susceptible to noise. A noise spike is generated each time the switch turns on. A fraction of a volt coupled into the control circuit can cause it to turn off immediately, resulting in a sub-harmonic operating mode with much greater ripple. Circuit layout and bypassing are critically important to successful operation.

Feature Description (continued)

The peak current mode control method is inherently unstable at duty ratios exceeding 0.5, resulting in subharmonic oscillation. A compensating ramp (with slope equal to the inductor current downslope) is usually applied to the comparator input to eliminate this instability. A slope compensation must be added to the sensed current waveform or subtracted from the control voltage to ensure stability above a 50% duty cycle. A compensating ramp (with slope equal to the inductor current downslope) is usually applied to the comparator input to eliminate this instability.

The pulse width modulator (PWM) of UC1856-SP is limited to a maximum duty cycle of 50%, thus it can be used in topologies such as push-pull, half bridge, full bridge, forward, flyback configurations. Limiting PWM to 50% duty cycle ensures that for isolated or transformer based topologies. The transformer is allowed to reset and prevent saturation of the transformer core.

Pulse-by-pulse symmetry correction (flux balancing) is inherent to current mode controllers and essential for the push-pull topology to prevent core saturation.

Current limit control design has numerous advantages:

- 1. Current mode control provided peak switch current limiting pulse by pulse current limit.
- 2. Control loop is simplified as one pole due to output inductor is pushed to higher frequency, thus a two pole system turns into two real poles. Thus system reduces to a first order system thus simplifies the control.
- 3. Multiple converter can be paralleled and allows equal current sharing amount the various converters.
- 4. Inherently provides for input voltage feed-forward as any perturbation in the input voltage will be reflected in the switch or inductor current. Since switch or inductor current is a direct control input, thus this perturbation is very rapidly corrected.
- 5. The error amplifier output (outer control loop) defines the level at which the primary current (inner loop) will regulate the pulse width, and output voltage.

Figure 2. Push-Pull Converter Using Current Mode Control

8.3.1 Reference

As highlighted in the Functional Block Diagram, UC1856-SP incorporates a 5.1-V internal reference regulator with $\pm 10\%$ set point variation over temperature.

8.3.2 Oscillator

Figure 7 highlights the oscillator circuit. Connecting a resistor RT from pin 9 to ground establishes a current, which is mirrored to pin 8 and charges the capacitor connected from pin 8 to ground. Maximum on-time corresponds to the maximum charging time of the timing capacitor. Oscillator frequency can be determined by Equation 5.

Off-time corresponds to capacitor discharge time establishes the converter dead time between the pulses according to Equation 4. Internal 8-mA current sink discharges the CT pin capacitor.

Feature Description (continued)

8.3.3 Slope Compensation

For duty cycle above 50% slope compensating can be implemented by using a buffer (i.e. 2N2222) and connecting base to timing capacitor pin 8, collector to VREF (5 V), a resistor in series with emitter connected to (pin 4) CS+ of differential current sense amplifier. Injecting a downslope proportional to the sawtooth into current sense amplifier.

As with any bipolar PWM IC, outputs should be protected from negatively biasing the substrate. This is typically done by using Schottky diodes from ground to each output. Failure to do this could cause spurious interruption and restart of the oscillator, dropping of output pulses and a significant increase in propagation delays.

8.3.4 Error Amplifier

UC1856-SP incorporates an error amplifier with typical open loop gain of 100 db and gain bandwidth of 1.5 MHz. With Source and sink capability of 10 mA and 0.5 mA respectively.

Error amplifier sources up to 0.5 mA.

8.3.5 Current Sense Amplifier

UC1856-SP incorporates a differential current sense amplifier which can eliminate ground loop problems and increase noise immunity. An R-C snubber can also be implemented thus helping in blanking the peak current spike when the switch is turned on. The input of the current sense amplifier is slew rate limited allowing lower values of filter capacitors to be used to eliminate leading edge noise.

Figure 4. Current-Sense Amplifier Connections

In some applications, a small RC filter is required to reduce switch transients. Differential input allows remote noise sensing.

8.3.6 Current Limit

Over current trip point is determined by Equation 1. Differential current sense amplifier has a gain of three, as shown in Figure 5.

Feature Description (continued)

Figure 5. Pulse-By-Pulse Current Limiting

Referring to Figure 5, Equation 1 determines the peak current, Is.

$$ls = \frac{\left(\frac{R2V_{REF}}{R1+R2}\right) - 0.5}{3R_{s}}$$

(1)

8.3.7 Shutdown

UC1856-SP incorporates a shutdown pin (pin16). Shutdown threshold voltage is 1 V. Exceeding the shutdown threshold voltage causes the device to shutdown.

- If current into ICL_SS V_{REF}/R1 > 3-mA SCR holding current (minimum latch current), then the device latches
 off. Power recycle is required to un-latch the device.
- If $V_{REF}/R1 < 0.8$ mA, that is ICL_SS < 0.8 A, then this ensures that the circuit does not latch in a shutdown state.

Figure 6. Shutdown Latch

Feature Description (continued)

Referring to Figure 10, if

 $\frac{V_{REF}}{M} < 0.8 \text{ mA}$

the shutdown latch commutates when ISS = 0.8 mA and a restart cycle initiates.

$$\frac{v_{REF}}{R1} > 3mA$$

٧/

the device latches off until power is recycled.

8.3.8 Output Section

UC1856-SP incorporates high current dual totem pole output stage capable of sourcing/sinking 1.5 A peak current for fast switching of power MOSFETs and limited to 0.5 A dc current.

8.3.9 Undervoltage Lockout

Minimum input voltage for converter is 8 V or higher, with typical value being 7.7 V. At input voltages below the actual UVLO voltage, the devices will not operate.

8.3.10 Soft-Start

Connecting a capacitor from CL/SS pin 1 to ground which is charged by 0.5-mA internal current source will determine the soft-start time. If over current is also implemented as shown in Figure 5, then SS charge time will be determined by charging SS capacitor by 0.5-mA current as well as current contributed by R1 resistor in charging the SS capacitor.

8.4 Device Functional Modes

8.4.1 Operation with $V_{IN} < 8 V$ (Minimum V_{IN})

The devices operate with input voltages above 8 V. The maximum UVLO voltage is 8 V and will operate at input voltages above 8 V. The typical UVLO voltage is 7.7 V and the devices may operate at input voltages above that point. The devices also may operate at lower input voltages, the minimum UVLO voltage is not specified. At input voltages below the actual UVLO voltage, the devices will not operate.

8.4.2 Synchronization

The synchronization pin (pin10) can be configured as an output for master/slave application. When the converter is configured as a master or standalone converter, SYNC (pin 10) is an output. As highlighted in the functional block diagram, voltage at RT (pin 9) is greater than 4.1-V internal threshold.

When using the part in slave configuration, SYNC pin becomes an input. Typical example of parallel operation with master/slave configuration is shown in Figure 12. Slave unit CT (pin 8) is grounded and RT pin is connected to VREF (pin 2).

When using the part in slave configuration, SYNC pin becomes an input. Typical example of parallel operation with master/slave configuration is shown in Figure 12. Slave unit CT (pin 8) is grounded and RT pin is connected to VREF (pin 2). Under parallel configuration two or more units can be paralleled, with COMP pins tied together each will share current equally.

8.4.3 Parallel Operation

Under parallel configuration two or more units can be paralleled, with COMP pins tied together each will share current equally.

Figure 12 highlights typical parallel operation configuration.

www.ti.com.cn

(2)

(3)

9 Applications and Implementation

9.1 Application Information

UC1856-SP can be used as a controller to design various topologies such as push-pull, half-bridge, full bridge, and flyback.

The following sections highlight the topologies for oscillators, error amplifiers, and parallel configurations (paralleling two EVMS).

9.2 Typical Applications

9.2.1 Oscillator Circuit

Figure 7. Oscillator Circuit

Referring to Figure 7, the size of the external capacitor, C_T , determines output dead time, according to Equation 4.

$$Td = \frac{2C_{T}}{8mA - \frac{3.6}{R_{T}}}$$

For large values of R_T : Td = 250 C_T .

Oscillator frequency is approximated by Equation 5.

$$f_{T} = \frac{2}{R_{T}C_{T}}$$
(5)

9.2.1.1 Design Requirements

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE	REFERENCE
Oscillator frequency = 200 kHz	$R_T = 10 \text{ k}\Omega, C_T = 1 \text{ nF}$	Equation 4, Figure 7
Dead time, Td = 75.8 ns	$R_T = 10 \text{ k}\Omega C_T = 1 \text{ n}F$	Equation 5, Figure 7

(4)

Texas Instruments

www.ti.com.cn

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Input Capacitor Selection

Load current, duty cycle, and switching frequency are several factors which determine the magnitude of the input ripple voltage. Without the input capacitor, the pulsating current of Q1 would need to be completely supplied by the host source, VIN, which commonly does not have sufficiently low output impedance. Thus there would be substantial noise on the host dc voltage source and an increase in the conducted EMI on the board. The input capacitor, CIN, effectively filters the input current so the current from the host dc source is approximately an average current.

The input ripple voltage amplitude is directly proportional to the output load current. The maximum input ripple amplitude occurs at maximum output load. Also, the amplitude of the voltage ripple varies with the duty cycle of the converter.

UC1856-SP requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at least 47 μ F of effective capacitance on the VIN input voltage pins. In some applications additional bulk capacitance may also be required for the VIN input. The effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple of the UC1856-SP. The input ripple current can be calculated using Equation 6.

$$Icirms = Iout \times \sqrt{\frac{Vout}{Vinmin} \times \frac{(Vinmin - Vout)}{Vinmin}}$$

The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor decreases as the DC bias across a capacitor increases.

The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using Equation 7.

$$\Delta \text{Vin} = \frac{\text{loutmax} \times 0.25}{\text{Cin} \times \text{fsw}}$$
(7)

9.2.1.2.2 Output Capacitor Selection

The output capacitance of a switching regulator is a vital part of the overall feedback system. The energy storage inductor and the output capacitor form a second-order low-pass filter.

In switching power supply power stages, the function of output capacitance is to store energy. The energy is stored in the capacitor's electric field due to the voltage applied. Thus, qualitatively, the function of a capacitor is to attempt to maintain a constant voltage.

The value of output capacitance of a buck power stage is generally selected to limit output voltage ripple to the level required by the specification. Since the ripple current in the output inductor is usually already determined, the series impedance of the capacitor primarily determines the output voltage ripple. The three elements of the capacitor that contribute to its impedance (and output voltage ripple) are equivalent series resistance (ESR), equivalent series inductance (ESL), and capacitance (C). The following gives guidelines for output capacitor selection.

For continuous inductor current mode operation, to determine the amount of capacitance needed as a function of inductor current ripple, ΔI_L , switching frequency, f_S , and desired output voltage ripple, ΔV_O , Equation 8 is used assuming all the output voltage ripple is due to the capacitor's capacitance.

$$C \ge \frac{\Delta IL}{8 \times fs \times \Delta Vo}$$

Where ΔI_L is the inductor ripple current.

(8)

(6)

Each capacitor type is characterized by its impedance and the frequency range over which it is most effective. The frequency at which the impedance reaches its minimum is determined by its ESR and ESL. It is known as the self resonant frequency of the capacitor. The self resonant frequency is considered to be the maximum usable frequency for a capacitor. Above this frequency the impedance of the capacitor begins to rise as the ESL of the capacitor begins to dominate. Note that each capacitor type has a specific frequency band over which it is most effective. Therefore, a capacitor network of multiple capacitor types is more effective in reducing impedance than just one type.

The current slew rate of a regulator is limited by its output filter inductor. When the amount of current required by the load changes, the initial current deficit must be supplied by the output capacitors until the regulator can meet the load demand.

The desired response to a large change in the load current is the first criteria. The output capacitor needs to supply the load with current when the regulator control loop can not supply the current. This happens when Load (ie: memory, processor) has a large and fast increase in current, such as a transition from no load to full load. The regulator typically needs two or more clock cycles for the control loop to see the change in load current, output voltage and adjust the duty cycle to react to the change. The output capacitor must be properly sized to supply the extra current to the Load until the control loop responds to the Load change. The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a tolerable amount of droop in the output voltage. Equation 9 shows the minimum output capacitance necessary to accomplish this.

$$Co > \frac{2 \times \Delta I_{out}}{f_{SW} \times \Delta V_{out}}$$
(9)

Where Δ lout is the change in output current, f_{SW} is the regulators switching frequency and Δ Vout is the allowable change in the output voltage. For this example, the transient load response is specified as a 5% change in Vout for a load step of 1A. For this example, Δ lout = 1.0 A and Δ Vout = 0.05 x 3.3 = 0.165 V. Using these numbers gives a minimum capacitance of 25 µF. This value does not take the ESR of the output capacitor into account in the output voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.

9.2.1.2.3 Output Inductor Selection

To calculate the value of the output inductor, use Equation 10. Kind is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor since the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general, the inductor ripple value is at the discretion of the designer; however, Kind is normally from 0.1 to 0.3 for the majority of applications. VinLC refers to the voltage at the input of output LC filter.

$$L1 = \frac{VinLC - Vout}{Io \times Kind} \times \frac{Vout}{VinLC \times fsw}$$
(10)

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults or transient load conditions, the inductor current can increase above the calculated peak inductor current level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the switch current limit rather than the peak inductor current.

9.2.1.2.4 Switching Frequency

Initial accuracy of UC1856-SP oscillator frequency is 200 kHz ±15% over the temperature range. Switching frequency selection is a trade-off between the overall design size and efficiency. Operating at lower switching frequency will result in higher efficiency at the expense of larger solution footprint.

Oscillator frequency can be determined as follows:

$R_T = 10 k\Omega$	(11)
C _T = 1 nF	(12)
fr – <u>2</u>	
RT×CT	(13)
f _T = 200 kHz	(14)

UC1856-SP ZHCSCE1-APRIL 2014

www.ti.com.cn

9.2.1.3 Application Curves

9.2.2 Parallel Operation

Slaving allows parallel operation of two or more units with equal current sharing.

Figure 12. Parallel Operation

9.2.2.1 Design Requirements

Refer to Design Requirements for the Oscillator Circuit Design Requirements.

9.2.2.2 Detailed Design Procedure

Refer to Detailed Design Procedure for the Oscillator Circuit Detailed Design Procedure.

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 8 V and 40 V. This input supply should be well regulated. If the input supply is located more than a few inches from the UC1856-SP converter additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A tantalum capacitor with a value of 47 μ F is a typical choice, however this may vary depending upon the output power being delivered.

11 Layout

11.1 Layout Guidelines

Always try to use a low EMI inductor with a ferrite type closed core. Some examples would be toroid and encased E core inductors. Open core can be used if they have low EMI characteristics and are located a bit more away from the low power traces and components. Make the poles perpendicular to the PCB as well if using an open core. Stick cores usually emit the most unwanted noise.

11.1.1 Feedback Traces

Try to run the feedback trace as far from the inductor and noisy power traces as possible. You would also like the feedback trace to be as direct as possible and somewhat thick. These two sometimes involve a trade-off, but keeping it away from inductor EMI and other noise sources is the more critical of the two. Run the feedback trace on the side of the PCB opposite of the inductor with a ground plane separating the two.

Layout Guidelines (continued)

11.1.2 Input/Output Capacitors

When using a low value ceramic input filter capacitor, it should be located as close to the VIN pin of the IC as possible. This will eliminate as much trace inductance effects as possible and give the internal IC rail a cleaner voltage supply. Some designs require the use of a feed-forward capacitor connected from the output to the feedback pin as well, usually for stability reasons. In this case it should also be positioned as close to the IC as possible. Using surface mount capacitors also reduces lead length and lessens the chance of noise coupling into the effective antenna created by through-hole components.

11.1.3 Compensation Components

External compensation components for stability should also be placed close to the IC. Surface mount components are recommended here as well for the same reasons discussed for the filter capacitors. These should not be located very close to the inductor either.

11.1.4 Traces and Ground Planes

Make all of the power (high current) traces as short, direct, and thick as possible. It is good practice on a standard PCB board to make the traces an absolute minimum of 15 mils (0.381 mm) per Ampere. The inductor, output capacitors, and output diode should be as close to each other possible. This helps reduce the EMI radiated by the power traces due to the high switching currents through them. This will also reduce lead inductance and resistance as well, which in turn reduces noise spikes, ringing, and resistive losses that produce voltage errors. The grounds of the IC, input capacitors, output capacitors, and output diode (if applicable) should be connected close together directly to a ground plane. It would also be a good idea to have a ground plane on both sides of the PCB. This will reduce noise as well by reducing ground loop errors as well as by absorbing more of the EMI radiated by the inductor. For multi-layer boards with more than two layers, a ground plane can be used to separate the power plane (where the power traces and components are) and the signal plane (where the feedback and compensation and components are) for improved performance. On multi-layer boards the use of vias will be required to connect traces and different planes. It is good practice to use one standard via per 200 mA of current if the trace will need to conduct a significant amount of current from one plane to the other. Arrange the components so that the switching current loops curl in the same direction. Due to the way switching regulators operate, there are two power states. One state when the switch is on and one when the switch is off. During each state there will be a current loop made by the power components that are currently conducting. Place the power components so that during each of the two states the current loop is conducting in the same direction. This prevents magnetic field reversal caused by the traces between the two half-cycles and reduces radiated EMI.

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品	应用		
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom	
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer	
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps	
DLP® 产品	www.dlp.com	能源	www.ti.com/energy	
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial	
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical	
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security	
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive	
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video	
微控制器 (MCU)	www.ti.com.cn/microcontrollers			
RFID 系统	www.ti.com.cn/rfidsys			
OMAP应用处理器	www.ti.com/omap			
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com	

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司

4-Feb-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
				_			(6)				
5962-9453001VEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9453001VE A UC1856J-SP	Samples
5962-9453001VXC	ACTIVE	CFP	НКТ	16	1	RoHS & Green	Call TI	N / A for Pkg Type	-55 to 125	5962-9453001VX C UC1856HKT-SP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

4-Feb-2021

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

HKT0016A

PACKAGE OUTLINE

CFP - 2.13 mm max height

CERAMIC DUAL FLATPACK

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This package is hermetically sealed with a metal lid. Lid and cavity are electrically isolated

- 4. The terminals are gold plated.
- 5. Falls within MIL-STD-1835 CDFP-F11A.

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没 有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可 将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知 识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款 的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

> 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司