

Sample &

Buy

ZHCSEX1A - MARCH 2016-REVISED APRIL 2016

bq27220 单节 CEDV 电量监测计

Technical

Documents

1 特性

- 单节串联锂离子电池电量监测计
 - 驻留在电池组或系统主板上
 - 支持嵌入式或可拆除电池
 - 由集成低压降稳压器 (LDO) 的电池直接供电
 - 支持低值 (10mΩ) 外部感测电阻
- 超低功耗:正常模式下为 50µA,休眠模式下为 9µA
- 基于补偿放电结束电压 (CEDV) 技术的电池电量监测
 - 用平滑滤波器报告剩余电量和充电状态 (SOC)
 - 针对电池老化、自放电以及温度和速率变化进行 自动调节
 - 提供电池健康(老化)状况的估计
- 微控制器外设支持:
 - 400kHz I²C™串行接口
 - 可配置的 SOC 中断或 电池低电量数字输出警告
 - 内部温度传感器、 主机报告的温度或 外部热敏电阻

2 应用

- 智能手机和功能手机
- 平板电脑
- 可穿戴产品
- 楼宇自动化
- 便携式医疗/工业手持终端
- 便携式音频设备
- 游戏机

3 说明

Tools &

Software

德州仪器 (TI) bq27220 电池电量监测计是一款单节电 池电量监测计,只需进行少量用户配置和系统微控制器 固件开发工作即可快速实现系统调通。 bq27220 器件 采用补偿放电结束电压 (CEDV) 算法进行电量检测, 可提供诸如剩余电量 (mAh)、充电状态 (%)、续航时间 (分钟)、电池电压 (mV)、温度 (℃) 和健康状况 (%) 等信息。

Support &

Community

2.2

bq27220 电池电量监测计在正常模式 (50μA) 和休眠模式 (9μA) 下均具有超低功耗,有助于延长电池运行时间。可配置中断有助于节省系统功耗,释放主机使其停止继续轮询。外部热敏电阻为精确温度感测提供支持。

客户可以使用 ROM 中预载的 CEDV 参数,或者使用 通过 TI 网络工具 GAUGEPARCAL 生成的定制化学参 数。生成的定制参数可在系统上电时通过主机编程到器 件 RAM 中,客户也可以将该参数编程到板载一次性可 编程 (OTP) 存储器中。

通过 bq27220 器件进行电池电量监测时,只需将 PACK+ (P+) 与 PACK- (P-) 连接至可拆卸电池组或嵌 入式电池电路即可。微型 9 焊球、1.62mm × 1.58mm、间距为 0.5mm 的 NanoFree™芯片级封装 (DSBGA),是空间受限类应用的 理想选择。

	器件信息 ⁽¹⁾	
器件型号	封装	封装尺寸(标称值)
bq27220	YZF (9)	1.62mm x 1.58mm

(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

目录

1	特性		
2	应用	1	
3	说明		
4	修订	历史记录	
5	Pin	Configuration and Functions 3	
6	Spe	cifications4	
	6.1	Absolute Maximum Ratings 4	
	6.2	ESD Ratings 4	
	6.3	Recommended Operating Conditions 5	
	6.4	Thermal Information 5	
	6.5	Supply Current 5	
	6.6	Digital Input and Output DC Characteristics 5	
	6.7	LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics	;
	6.8	LDO Regulator, Wake-up, and Auto-shutdown AC Characteristics	5
	6.9	ADC (Temperature and Cell Measurement) Characteristics	
	6.10	Integrating ADC (Coulomb Counter) Characteristics	
	6.11	I ² C-Compatible Interface Communication Timing Characteristics	
	6.12	SHUTDOWN and WAKE-UP Timing 8	

	6.13	Typical Characteristics	8
7	Deta	iled Description	9
	7.1	Overview	9
	7.2	Functional Block Diagram (System-Side Configuration)	9
	7.3	Feature Description	9
	7.4	Device Functional Modes	11
8	Арр	lication and Implementation	12
	8.1	Application Information	12
	8.2	Typical Applications	12
9	Pow	er Supply Recommendation	15
	9.1	Power Supply Decoupling	15
10	Lay	out	15
	10.1	Layout Guidelines	15
	10.2	Layout Example	16
11	器件	和文档支持	17
	11.1	文档支持	17
	11.2	社区资源	17
	11.3	商标	17
	11.4	静电放电警告	17
	11.5	Glossary	17
12	机械	、封装和可订购信息	17

4 修订历史记录

日期	修订版本	注释
2016 年 4 月	A	"产品预览"至"量产数据"

www.ti.com.cn

5 Pin Configuration and Functions

Bottom View

Pin Functions

Р	IN	ТҮРЕ	DESCRIPTION		
NAME NUMBER		TIFE	DESCRIPTION		
BAT	СЗ	PI, AI ⁽¹⁾	LDO regulator input and battery voltage measurement input. Kelvin sense connect to the positive battery terminal (PACKP). Connect a capacitor (1 μF) between BAT and V _{SS} . Place the capacitor close to the gauge.		
BIN	B1	DI	Battery insertion detection input. If OpConfig [BI_PU_EN] = 1 (default), a logic low on the pin is detected as battery insertion. For a removable pack, the BIN pin can be connected to V_{SS} through a pulldown resistor on the pack, typically the 10-k Ω thermistor; the system board should use a 1.8-M Ω pullup resistor to V_{DD} to ensure the BIN pin is high when a battery is removed. If the battery is embedded in the system or in the pack, it is recommended to leave [BI_PU_EN] = 1 and use a 10-k Ω pulldown resistor from BIN to V_{SS} . If [BI_PU_EN] = 0, then the host must inform the gauge of battery insertion and removal with the <i>BAT_INSERT</i> and <i>BAT_REMOVE</i> subcommands. A 10-k Ω pulldown resistor should be placed between BIN and V_{SS} , even if this pin is unused. NOTE: The BIN pin must not be shorted directly to V_{CC} or V_{SS} and any pullup resistor on the BIN pin must be connected only to V_{DD} and not an external voltage rail. If an external thermistor is used for temperature input, the thermistor should be connected between this pin and V_{SS} .		

(1) IO = Digital input-output, AI = Analog input, P = Power connection

bq27220 ZHCSEX1A – MARCH 2016– REVISED APRIL 2016 STRUMENTS

XAS

Pin Functions (continued)

PIN		TYPE	DESCRIPTION		
NAME	NUMBER	ITPE	DESCRIPTION		
GPOUT	A1	DO	This open-drain output can be configured to indicate BAT_LOW when the OpConfig [BATLOWEN] bit is set. By default [BATLOWEN] is cleared and this pin performs an interrupt function (SOC_INT) by pulsing for specific events, such as a change in state-of-charge. Signal polarity for these functions is controlled by the [GPIOPOL] configuration bit. This pin should not be left floating, even if unused; therefore, a 10-k Ω pullup resistor is recommended. If the device is in SHUTDOWN mode, toggling GPOUT makes the gauge exit SHUTDOWN. It is recommended to connect GPOUT to a GPIO of the host MCU so that in case of any inadvertent shutdown condition, the gauge can be commanded to come out of SHUTDOWN.		
SCL	A3	DIO	Slave I ² C serial bus for communication with system (Master). Open-drain pins. Use with external		
SDA	A2	DIO	10-k Ω pullup resistors (typical) for each pin. If the external pullup resistors will be disconnected from these pins during normal operation, recommend using external 1-M Ω pulldown resistors to V _{SS} at each pin to avoid floating inputs.		
SRN	C2	AI	Coulomb counter differential inputs expecting an external 10-mΩ, 1% sense resistor. For system-		
SRP	C1	AI	side configurations, Kelvin sense connect SRP to the positive battery terminal (PACKP) side of the external sense resistor. Kelvin sense connect SRN to the other side of the external sense resistor with the positive connection to the system (VSYS). For pack-side configurations with low-side sensing, connect SRP to PACK– and SRN to Cell–. See the <i>Simplified Schematic</i> . No calibration is required. The fuel gauge is pre-calibrated for a standard 10-m Ω , 1% sense resistor.		
V _{DD}	В3	PO	1.8-V regulator output. Decouple with a 2.2- μ F ceramic capacitor to V _{SS} . This pin is not intended to provide power for other devices in the system.		
V _{SS}	B2	PI	Ground pin		

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{BAT}	BAT pin input voltage range	-0.3	6	V
V	SRP and SRN pins input voltage range	-0.3	V _{BAT} + 0.3	V
V _{SR}	Differential voltage across SRP and SRN. ABS(SRP - SRN)		2	V
V _{DD}	V _{DD} pin supply voltage range (LDO output)	-0.3	2	V
V _{IOD}	Open-drain IO pins (SDA, SCL)	-0.3	6	V
V _{IOPP}	Push-pull IO pins (BIN)	-0.3	V _{DD} + 0.3	V
T _A	Operating free-air temperature range	-40	85	°C
Storage t	temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
$C_{BAT}^{(1)}$	External input capacitor for internal LDO between BAT and V_{SS}	Nominal capacitor values specified.		0.1		μF
C _{LDO18} ⁽¹⁾	External output capacitor for internal LDO between V_{DD} and V_{SS}	Recommend a 5% ceramic X5R-type capacitor located close to the device.		2.2		μF
$V_{PU}^{(1)}$	External pullup voltage for open-drain pins (SDA, SCL, GPOUT)		1.62		3.6	V

(1) Specified by design. Not production tested.

6.4 Thermal Information

		bq27220	
	THERMAL METRIC ⁽¹⁾	YZF (DSBGA)	UNIT
		9 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	64.1	°C/W
R _{0JCtop}	Junction-to-case (top) thermal resistance	59.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	52.7	°C/W
ΨJT	Junction-to-top characterization parameter	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	28.3	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	2.4	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953

6.5 Supply Current

 $T_A = 30^{\circ}C$ and $V_{BAT} = 3.6 V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{CC}^{(1)}$	NORMAL mode current	I _{LOAD} > Sleep Current ⁽²⁾		50		μA
$I_{SLP}^{(1)}$	SLEEP mode current	I _{LOAD} < Sleep Current ⁽²⁾		9		μA
$I_{SD}^{(1)}$	SHUTDOWN mode current	Fuel gauge in host commanded SHUTDOWN mode. (LDO regulator output disabled)		0.6		μΑ

(1) Specified by design. Not production tested.

(2) Wake Comparator Disabled.

6.6 Digital Input and Output DC Characteristics

 $T_A = -40^{\circ}$ C to 85°C, typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH(OD)}	Input voltage, high ⁽²⁾	External pullup resistor to V_{PU}	V _{PU} × 0.7			V
V _{IH(PP)}	Input voltage, high ⁽³⁾		1.4			V
V _{IL}	Input voltage, low ^{(2) (3)}				0.6	V
V _{OL}	Output voltage, low ⁽²⁾				0.6	V
I _{OH}	Output source current, high ⁽²⁾				0.5	mA
I _{OL(OD)}	Output sink current, low ⁽²⁾				-3	mA
C _{IN} ⁽¹⁾	Input capacitance ⁽²⁾⁽³⁾				5	pF
l _{lkg}	Input leakage current (SCL, SDA, BIN, GPOUT)				1	μA

Specified by design. Not production tested.
 Open Drain pins: (SCL, SDA, GPOUT)

(3) Push-Pull pin: (BIN)

RUMENTS

6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics

 $T_A = -40^{\circ}$ C to 85°C, typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

~	, , , , , , , , , , , , , , , , , , ,	DAT	,			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{BAT}	BAT pin regulator input		2.45		4.5	V
V _{DD}	Regulator output voltage			1.85		V
UVLO _{IT+}	V _{BAT} undervoltage lock-out LDO wake-up rising threshold			2		V
UVLO _{IT-}	V _{BAT} undervoltage lock-out LDO auto-shutdown falling threshold			1.95		V
V _{WU+} ⁽¹⁾	GPOUT (input) LDO Wake-up rising edge threshold ⁽²⁾	LDO Wake-up from SHUTDOWN mode	1.2			V

(1) Specified by design. Not production tested.

(2) If the device is commanded to SHUTDOWN via I²C with V_{BAT} > UVLO_{IT+}, a wake-up rising edge trigger is required on GPOUT.

6.8 LDO Regulator, Wake-up, and Auto-shutdown AC Characteristics

$T_A = -40^{\circ}$ C to 85°C, typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SHDN} ⁽¹⁾	SHUTDOWN entry time	Time delay from SHUTDOWN command to LDO output disable.			250	ms
t _{SHUP} ⁽¹⁾	SHUTDOWN GPOUT low time	Minimum low time of GPOUT (input) in SHUTDOWN before WAKEUP	10			μs
$t_{VDD}^{(1)}$	Initial V_{DD} output delay			13		ms
t _{WUVDD} ⁽¹⁾	Wake-up V_{DD} output delay	Time delay from rising edge of GPOUT (input) to nominal V _{DD} output.		8		ms
t _{PUCD}	Power-up communication delay	Time delay from rising edge of BAT to the Active state. Includes firmware initialization time.		250		ms

(1) Specified by design. Not production tested.

6.9 ADC (Temperature and Cell Measurement) Characteristics

 $T_A = -40^{\circ}$ C to 85°C; typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

		Bitti				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN(BAT)}	BAT pin voltage measurement range	Voltage divider enabled	2.45		4.5	V
t _{ADC_CONV}	Conversion time			125		ms
	Effective resolution			15		bits

(1) Specified by design. Not tested in production.

6.10 Integrating ADC (Coulomb Counter) Characteristics

 $T_A = -40^{\circ}$ C to 85°C; typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{SRCM}	Input voltage range of SRN, SRP pins		VSS		V _{BAT}	V
V _{SRDM}	Input differential voltage range of VSRP–VSRN			± 80		mV
t _{SR_CONV}	Conversion time	Single conversion		1		S
	Effective Resolution	Single conversion		16		bits

(1) Specified by design. Not tested in production.

TEXAS INSTRUMENTS

6.11 I²C-Compatible Interface Communication Timing Characteristics

 $T_A = -40^{\circ}$ C to 85°C; typical values at $T_A = 30^{\circ}$ C and $V_{BAT} = 3.6$ V (unless otherwise noted)

			MIN	NOM MAX	UNIT
Standard	Mode (100 kHz)				
t _{d(STA)}	Start to first falling edge of SCL		4		μs
t _{w(L)}	SCL pulse duration (low)		4.7		μs
t _{w(H)}	SCL pulse duration (high)		4		μs
t _{su(STA)}	Setup for repeated start		4.7		μs
t _{su(DAT)}	Data setup time	Host drives SDA	250		ns
t _{h(DAT)}	Data hold time	Host drives SDA	0		ns
t _{su(STOP)}	Setup time for stop		4		μs
t _(BUF)	Bus free time between stop and start	Includes Command Waiting Time	66		μs
t _f	SCL or SDA fall time ⁽¹⁾			300	ns
t _r	SCL or SDA rise time ⁽¹⁾			300	ns
f _{SCL}	Clock frequency ⁽²⁾			100	kHz
Fast Mode	e (400 kHz)				
t _{d(STA)}	Start to first falling edge of SCL		600		ns
t _{w(L)}	SCL pulse duration (low)		1300		ns
t _{w(H)}	SCL pulse duration (high)		600		ns
t _{su(STA)}	Setup for repeated start		600		ns
t _{su(DAT)}	Data setup time	Host drives SDA	100		ns
t _{h(DAT)}	Data hold time	Host drives SDA	0		ns
t _{su(STOP)}	Setup time for stop		600		ns
t _(BUF)	Bus free time between stop and start	Includes Command Waiting Time	66		μs
t _f	SCL or SDA fall time ⁽¹⁾			300	ns
t _r	SCL or SDA rise time ⁽¹⁾			300	ns
f _{SCL}	Clock frequency ⁽²⁾			400	kHz
f _{SCL}	Clock frequency ⁽²⁾			400	

(1) Specified by design. Not production tested.

(2) If the clock frequency (f_{SCL}) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at 400 kHz. (See $\frac{PC}{C}$ Interface and $\frac{PC}{C}$ Command Waiting Time.)

Figure 1. I²C-Compatible Interface Timing Diagram

6.12 SHUTDOWN and WAKE-UP Timing

* GPOUT is configured as an input for wakeup signaling.

6.13 Typical Characteristics

7 Detailed Description

7.1 Overview

The bq27220 fuel gauge accurately predicts the battery capacity and other operational characteristics of a single Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information such as state-of-charge (SoC). The bq27220 monitors charge and discharge activity by sensing the voltage across a small value resistor (10 m Ω typical) between the SRP and SRN pins and in series with the battery. By integrating charge passing through the battery, the battery's SOC is adjusted during battery charge or discharge.

The fuel gauging is derived from the Compensated End of Discharge Voltage (CEDV) method, which uses a mathematical model to correlate remaining state of charge (RSOC) and voltage near to the end of discharge state. This requires a full discharge cycle for a single point FCC update. The implementation models cell voltage (OCV) as a function of battery state of charge (SOC), temperature, and current. The impedance is also a function of SOC and temperature, all of which can be satisfied by using seven parameters: EMF, C0, R0, T0, R1, TC, C1.

NOTE

The following formatting conventions are used in this document:

Commands: italics with parentheses() and no breaking spaces, for example, Control().

Data Flash: italics, bold, and breaking spaces, for example, Design Capacity.

Register bits and flags: italics with brackets [], for example, [TDA]

Data flash bits: italics, bold, and brackets [], for example, [LED1]

Modes and states: ALL CAPITALS, for example, UNSEALED mode.

7.2 Functional Block Diagram (System-Side Configuration)

7.3 Feature Description

Information is accessed through a series of commands called *Standard Commands*. Further capabilities are provided by the additional *Extended Commands* set. Both sets of commands, indicated by the general format *Command*), are used to read and write information within the control and status registers, as well as its data locations. Commands are sent from the system to the gauge using the I²C serial communications engine, and can be executed during application development, system manufacture, or end-equipment operation.

The fuel gauge measures the charging and discharging of the battery by monitoring the voltage across a small-value sense resistor. When a cell is attached to the fuel gauge, cell impedance is computed based on cell current, cell open-circuit voltage (OCV), and cell voltage under loading conditions.

The fuel gauge uses an integrated temperature sensor for estimating cell temperature. Alternatively, the host processor can provide temperature data for the fuel gauge.

Copyright © 2016, Texas Instruments Incorporated

Feature Description (continued)

For more details, see the bq27220 Technical Reference Manual (SLUUBD4).

The external temperature sensing is optimized with the use of a high accuracy negative temperature coefficient (NTC) thermistor with R25 = $10.0 \text{ k}\Omega \pm 1\%$. B25/85 = $3435\text{K} \pm 1\%$ (such as Semitec NTC 103AT) on the BIN pin. Alternatively, the bq27220 can also be configured to use its internal temperature sensor or receive temperature data from the host processor. The bq27220 uses temperature to monitor the battery-pack environment, which is used for fuel gauging and cell protection functionality.

7.3.1 Communications

7.3.1.1 ^PC Interface

The fuel gauge supports the standard I²C read, incremental read, quick read, one-byte write, and incremental write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as 1010101. The first 8 bits of the I²C protocol are, therefore, 0xAA or 0xAB for write or read, respectively.

(e) incremental write

(S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge, and P = Stop).

Figure 6. I²C Interface Read and Write Functions

The quick read returns data at the address indicated by the address pointer. The address pointer, a register internal to the I²C communication engine, increments whenever data is acknowledged by the fuel gauge or the I²C master. "Quick writes" function in the same manner and are a convenient means of sending multiple bytes to consecutive command locations (such as two-byte commands that require two bytes of data).

The following command sequences are not supported:

	r <i></i> .		·····		2
S ADDR[6:0]	CMD[7:0]	A	DATA[7:0]	Ν	P
		1	r		5-1

Figure 7. Attempt to Write a Read-Only Address (NACK After Data Sent By Master)

R - K			
S ADDR[6:0]	CMD[7:0]	1 N I	Ρ
		u r-	_

Figure 8. Attempt to Read an Address Above 0x6B (NACK Command)

7.3.1.2 *P*C Time Out

The I²C engine releases both SDA and SCL if the I²C bus is held low for 2 seconds. If the fuel gauge is holding the lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of the lines low, the I²C engine enters the low-power SLEEP mode.

Feature Description (continued)

7.3.1.3 PC Command Waiting Time

To ensure proper operation at 400 kHz, a $t_{(BUF)} \ge 66 \ \mu s$ bus-free waiting time must be inserted between all packets addressed to the fuel gauge. In addition, if the SCL clock frequency (f_{SCL}) is > 100 kHz, use individual 1-byte write commands for proper data flow control. Figure 9 shows the standard waiting time required between issuing the control subcommand the reading the status result. For read-write standard commands, a minimum of 2 seconds is required to get the result updated. For read-only standard commands, there is no waiting time required, but the host must not issue any standard command more than two times per second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.

S ADDR [6:0] 0 A	CMD [7:0]	A DATA [7	:0] A P	66μs				
S ADDR [6:0] 0 A	CMD [7:0]	A DATA [7	:0] A P	66μs				
S ADDR [6:0] 0 A	CMD [7:0]	A Sr ADDF	R [6:0] 1 A	DATA [7:0]	A	DATA [7:0]	ΝP	66µs
Waiting ti	me inserted be	tween two 1-byte	write packets fo	r a subcomman	d and rea	idina results		

(required for 100 kHz < $f_{scl} \le 400$ kHz)

S ADDR [6:0] 0 A	CMD [7:0]		DATA [7:0]	A	DATA [7:0]	AP	66µs		
S ADDR [6:0] 0 A	CMD [7:0]	A Sr	ADDR [6:0]	1	A DATA [7:0]	A	DATA [7:0]	N P	66µs

Waiting time inserted between incremental 2-byte write packet for a subcommand and reading results

(acceptable for $f_{SCL} \leq 100 \text{ kHz}$)

S ADDR [6:0		A CMD [7:0]	A	Sr ADDR	[6:0] / 1 A	DATA [7:0]	A	DATA [7:0]	A
DATA [7:0]	A	DATA [7:0]	NP	66µs					

Waiting time inserted after incremental read

Figure 9. Standard Waiting Time

7.3.1.4 $m \ell^2 C$ Clock Stretching

A clock stretch can occur during all modes of fuel gauge operation. In SLEEP mode, a short \leq 100-µs clock stretch occurs on all I²C traffic as the device must wake-up to process the packet. In the other modes (INITIALIZATION, NORMAL), a \leq 4-ms clock stretching period may occur within packets addressed for the fuel gauge as the I²C interface performs normal data flow control.

7.4 Device Functional Modes

To minimize power consumption, the fuel gauge has several power modes: INITIALIZATION, NORMAL, and SLEEP. The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events, though a system processor can initiate some of these modes directly. For more details, see the *bq27220 Technical Reference Manual* (SLUUBD4).

TEXAS INSTRUMENTS

www.ti.com.cn

8 Application and Implementation

NOTE

Information in the following application section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The bq27220 fuel gauge is a microcontroller peripheral that provides system-side or pack-side fuel gauging for single-cell Li-Ion batteries. The device requires minimal configuration and uses One-Time Programmable (OTP) Non-Volatile Memory (NVM). Battery fuel gauging with the fuel gauge requires connections only to PACK+ and PACK– for a removable battery pack or embedded battery circuit. To allow for optimal performance in the end application, special considerations must be taken to ensure minimization of measurement error through proper printed circuit board (PCB) board layout. Such requirements are detailed in *Design Requirements*.

8.2 Typical Applications

Figure 10. Typical Application for Pack-Side Using Low-Side Sensing

8.2.1 Design Requirements

As shipped from the Texas Instruments factory, many bq27220 parameters in OTP NVM are left in the unprogrammed state (zero). This partially programmed configuration facilitates customization for each end application. Upon device reset, the contents of OTP are copied to associated volatile RAM-based data memory blocks. For proper operation, all parameters in RAM-based data memory require initialization — either by updating data memory parameters in a lab/evaluation situation or by programming the OTP for customer production. The *bq27220 Technical Reference Manual* (SLUUBD4) shows the default value and a typically expected value appropriate for most of applications.

Typical Applications (continued)

8.2.2 Detailed Design Procedure

8.2.2.1 BAT Voltage Sense Input

A ceramic capacitor at the input to the BAT pin is used to bypass AC voltage ripple to ground, greatly reducing its influence on battery voltage measurements. It proves most effective in applications with load profiles that exhibit high-frequency current pulses (that is, cell phones) but is recommended for use in all applications to reduce noise on this sensitive high-impedance measurement node.

8.2.2.2 Integrated LDO Capacitor

The fuel gauge has an integrated LDO with an output on the V_{DD} pin of approximately 1.8 V. A capacitor with a value of at least 2.2 μ F should be connected between the V_{DD} pin and V_{SS} . The capacitor must be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS} . This regulator must not be used to provide power for other devices in the system.

8.2.2.3 Sense Resistor Selection

Any variation encountered in the resistance present between the SRP and SRN pins of the fuel gauge will affect the resulting differential voltage, and derived current, that it senses. As such, it is recommended to select a sense resistor with minimal tolerance and temperature coefficient of resistance (TCR) characteristics. The standard recommendation based on the best compromise between performance and price is a 1% tolerance, 50-ppm drift sense resistor with a 1-W power rating.

8.2.3 External Thermistor Support

The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type (NTC) thermistor with a characteristic 10-k Ω resistance at room temperature (25°C). The default curve-fitting coefficients configured in the fuel gauge specifically assume a Semitec 103AT type thermistor profile and so that is the default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance profile (for example, JT-2 or others) requires an update to the default thermistor coefficients, which can be modified in RAM to ensure highest accuracy temperature measurement performance.

bq27220 ZHCSEX1A – MARCH 2016–REVISED APRIL 2016

www.ti.com.cn

Typical Applications (continued)

8.2.4 Application Curves

9 Power Supply Recommendation

9.1 Power Supply Decoupling

The battery connection on the BAT pin is used for two purposes:

- To supply power to the fuel gauge, and
- To provide an input for voltage measurement of the battery.

A capacitor of value of at least 1 μ F should be connected between BAT and V_{SS}. The capacitor must be placed close to the gauge IC and have short traces to both the BAT pin and V_{SS}.

The fuel gauge has an integrated LDO with an output on the V_{DD} pin of approximately 1.8 V. A capacitor of value of at least 2.2 μ F should be connected between the V_{DD} pin and V_{SS}. The capacitor must be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}. This regulator must not be used to provide power for other devices in the system.

10 Layout

10.1 Layout Guidelines

- A capacitor of value of at least 2.2 µF is connected between the V_{DD} pin and V_{SS}. The capacitor must be placed close to the gauge IC and have short traces to both the V_{DD} pin and V_{SS}. This regulator must not be used to provide power for other devices in the system.
- It is required to have a capacitor of at least 1.0 µF connect between the BAT pin and V_{SS} if the connection between the battery pack and the gauge BAT pin has the potential to pick up noise. The capacitor should be placed close to the gauge IC and have short traces to both the BAT pin and V_{SS}.
- If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power operation, it is recommended to use external 1-MΩ pulldown resistors to V_{SS} to avoid floating inputs to the I²C engine.
- The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus capacitance. Some recommended values, assuming a bus capacitance of 10 pF, can be seen in Table 1.

VPU	1.8 V		3.3 V		
D	Range	Typical	Range	Typical	
R _{PU}	$400 \ \Omega \leq R_{PU} \leq 37.6 \ k\Omega$	10 kΩ	900 Ω ≤ R _{PU} ≤ 29.2 kΩ	5.1 kΩ	

Table 1. Recommended Values for SCL and SDA Pullup Resistors

- If the host is not using the GPOUT functionality, then it is recommended that GPOUT be connected to a GPIO of the host so that in the cases where the device is in SHUTDOWN, toggling GPOUT can wake the gauge from the SHUTDOWN state.
- If the battery pack thermistor is not connected to the BIN pin, the BIN pin should be pulled down to V_{SS} with a 10-k Ω resistor.
- The BIN pin should not be shorted directly to V_{DD} or V_{SS}.
- The actual device ground is pin B2 (V_{SS}).
- The SRP and SRN pins should be Kelvin connected to the R_{SENSE} terminals. SRP to the battery pack side of R_{SENSE} and SRN to the system side of the R_{SENSE}.
- Kelvin connect the BAT pin to the battery PACKP terminal.

bq27220 ZHCSEX1A – MARCH 2016– REVISED APRIL 2016

www.ti.com.cn

10.2 Layout Example

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

- 《bq27220 技术参考》手册(文献编号: SLUUBD4)
- 《bg27220 快速入门指南》(文献编号: SLUUAP7)
- 《单节电池电量监测计电路设计》(SLUA456)
- 《bq27500 和 bq27501 主要设计注意事项》(SLUA439)
- 《手持式电池电子产品中的 ESD 和 RF 迁移》(SLUA460)

11.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

NanoFree, E2E are trademarks of Texas Instruments. I²C is a trademark of NXP Semiconductors, N.V. All other trademarks are the property of their respective owners.

11.4 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ27220YZFR	ACTIVE	DSBGA	YZF	9	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27220	Samples
BQ27220YZFT	ACTIVE	DSBGA	YZF	9	250	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BQ27220	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ27220YZFR	DSBGA	YZF	9	3000	180.0	8.4	1.78	1.78	0.69	4.0	8.0	Q1
BQ27220YZFT	DSBGA	YZF	9	250	180.0	8.4	1.78	1.78	0.69	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-May-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ27220YZFR	DSBGA	YZF	9	3000	182.0	182.0	20.0
BQ27220YZFT	DSBGA	YZF	9	250	182.0	182.0	20.0

YZF0009

PACKAGE OUTLINE

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

YZF0009

EXAMPLE BOARD LAYOUT

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).

YZF0009

EXAMPLE STENCIL DESIGN

DSBGA - 0.625 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司