

Buy

Tools &

Software

bq3055

ZHCS692C-OCTOBER 2010-REVISED OCTOBER 2015

bq3055适用于 2、3 和 4 节串联锂离子电池的 CEDV 电量监测计和电池组管理器

特性 1

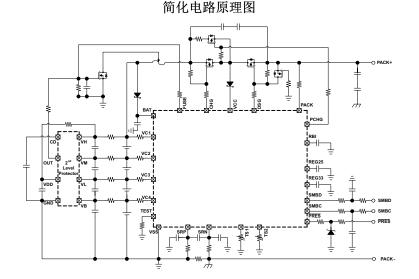
- 完全集成的2节、3节和4节串联的锂离子或者锂 聚合物电池组管理器和保护
- 高级补偿放电终点电压 (CEDV) 测量
- 高侧 N 沟道保护场效应晶体管 (FET) 驱动器
- 集成的电池均衡管理
- 低功耗模式
 - 低功率: < 180µA
 - 睡眠模式 < 76µA</p>
- 全面的可编程保护 功能
 - 电压
 - 电流
 - 温度
- 精密的充电算法
 - 日本电子与信息技术工业协会 (JEITA)
 - 增强型充电
 - 自适应充电
- 支持 2 线制系统管理总线 (SMBus) v1.1 接口
- 安全散列算法 (SHA-1) 认证
- 紧凑封装: 30 引线薄型小尺寸封装 (TSSOP)
- 2 应用
- 笔记本电脑和上网本
- 医疗与测试设备
- 便携式仪表

3 说明

bq3055 器件是一款基于电池组的单芯片全集成解决方 案, 针对 2、3 和 4 节串联锂离子和锂聚合物电池组 提供电量监测、保护及认证等一系列丰富的功能。

通过使用其集成的高性能模拟外设,bq3055 器件测量 并保存锂离子或者锂聚合物电池的可用容量、电压、电 流、温度、和其它关键参数,并通过 SMBus v1.1兼容 接口将这些信息报告给系统主机控制器。

bq3055 在过压、欠压、过热、和过度充电情况下提供 基于软件的第一级和第二级安全保护,以及对放电过 流,充放电短路情况下基于硬件的保护。


具有用于认证码存储的安全内存的 SHA-1 认证能够毫 无疑问地识别真正的电池组。

紧凑的 30 引脚 TSSOP 封装在大大降低解决方案成本 并减小解决方案尺寸的同时,最大限度地为电池监测应 用提供了功能性与 安全性。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
bq3055	TSSOP (30)	7.80mm x 4.40mm

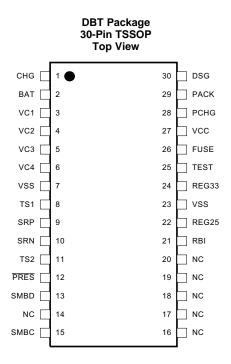
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。

目录

1	特性	
2	应用	
3	说明	
4	修订	历史记录 2
5		Configuration and Functions 3
6		cifications
-	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings
	6.3	Recommended Operating Conditions
	6.4	Thermal Information
	6.5	Electrical Characteristics: Supply Current5
	6.6	Power-On Reset (POR) 6
	6.7	Wake From Sleep 6
	6.8	RBI RAM Backup 6
	6.9	3.3-V Regulator 6
	6.10	2.5-V Regulator 7
	6.11	PRES, SMBD, SMBC 7
	6.12	CHG, DSG FET Drive 7
	6.13	PCHG FET Drive8
	6.14	FUSE
	6.15	Coulomb Counter 8
	6.16	VC1, VC2, VC3, VC4
	6.17	TS1, TS2
	6.18	Internal Temperature Sensor 9
	6.19	Internal Thermal Shutdown9
	6.20	High-Frequency Oscillator9
	6.21	Low-Frequency Oscillator 10
	6.22	Internal Voltage Reference 10

	6.23	Flash	10
	6.24	OCD Current Protection	10
	6.25	SCD1 Current Protection	11
	6.26	SCD2 Current Protection	11
	6.27	SCC Current Protection	11
	6.28	SBS Timing Requirements	12
	6.29	Typical Characteristics	13
7	Para	meter Measurement Information	14
	7.1	Battery Parameter Measurements	14
8	Deta	iled Description	15
	8.1	Overview	15
	8.2	Functional Block Diagram	17
	8.3	Feature Description	17
	8.4	Device Functional Modes	18
9	Appl	ication and Implementation	19
	9.1	Application Information	19
	9.2	Typical Application	19
	9.3	System Example	30
10	Pow	er Supply Recommendations	31
11	Layo	out	31
	11.1	Layout Guidelines	31
	11.2	Layout Example	31
12	器件	和文档支持	32
	12.1	文档支持	32
	12.2	社区资源	32
	12.3	商标	32
	12.4	Glossary	32
13	机械	、封装和可订购信息	32

4 修订历史记录


注: 之前版本的页码可能与当前版本有所不同。

Cł	hanges from Revision B (October 2013) to Revision C	Page
•	已添加 ESD 额定值表,特性 描述部分,器件功能模式,应用和实施部分,电源相关建议部分,布局部分,器件和文档支持部分,社区资源部分,以及机械、封装和可订购信息部分	1
•	Changed SRP, SRN absolute maximum values	4
Cł	hanges from Revision A (June 2011) to Revision B	Page

• (Changed Electrical	Characteristic for ${\rm I}_{\rm CC}$	Shutdown	5
-----	--------------------	---------------------------------------	----------	---

5 Pin Configuration and Functions

Pin Functions

PIN TYPE ⁽¹⁾		TVDE(1)	DECODIPTION	
NAME	NO.	ITPE	DESCRIPTION	
BAT	2	Р	Alternate power source	
CHG	1	0	Charge N-FET gate drive	
DSG	30	0	Discharge N-FET gate drive	
FUSE	26	0	Fuse drive	
NC	14	—	Not internally connected. Connect to VSS.	
NC	16	—	Not internally connected. Connect to VSS.	
NC	17	_	lot internally connected. Connect to VSS.	
NC	18	—	lot internally connected. Connect to VSS.	
NC	19	—	Not internally connected. Connect to VSS.	
NC	20	—	Not internally connected. Connect to VSS.	
PACK	29	Р	Alternate power source	
PCHG	28	I/OD	Precharge P-FET gate drive	
PRES	12	I	Host system present input	
RBI	21	Р	RAM backup	
REG25	22	Р	2.5-V regulator output	
REG33	24	Р	3.3-V regulator output	
SMBC	15	I/OD	SMBus v1.1 clock line	
SMBD	13	I/OD	SMBus v1.1 data line	
SRN	10	AI	Differential Coulomb Counter input	
SRP	9	AI	Differential Coulomb Counter input	
TEST	25	_	Test pin, connect to VSS through 2-kΩ resistor.	
TS1	8	AI	Temperature sensor 1 thermistor input	
TS2	11	AI	Temperature sensor 2 thermistor input	

(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output

bq3055 ZHCS692C – OCTOBER 2010 – REVISED OCTOBER 2015

www.ti.com.cn

ISTRUMENTS

EXAS

Pin Functions (continued)

	PIN		DESCRIPTION			
NAME	NO.	ITPE''	DESCRIPTION			
VC1	3	Ι	Sense input for positive voltage of top most cell in stack and cell balancing input for top most cell in stack			
VC2	4	Ι	ense input for positive voltage of third lowest cell in stack and cell balancing input for third owest cell in stack			
VC3	5	I	Sense input for positive voltage of second lowest cell in stack and cell balancing input for second lowest cell in stack			
VC4	6	I	Sense input for positive voltage of lowest cell in stack and cell balancing input for lowest cell in stack			
VCC	27	Р	Power supply voltage			
VSS	7	Р	Device ground			
VSS	23	Р	Device ground			

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT	
Supply voltage, V _{MAX}	VCC, TEST, PACK w.r.t. V _{SS}	-0.3	34	V	
	VC1, BAT	V _{VC2} - 0.3	V _{VC2} + 8.5 V or 34 V, whichever is lower		
	VC2	$V_{VC3} - 0.3$	V _{VC3} + 8.5 V		
Input voltage, V _{IN}	VC3	$V_{VC4} - 0.3$	V _{VC4} + 8.5 V	V	
	VC4	V _{SRP} – 0.3	V _{SRP} + 8.5 V		
	SRP, SRN	-0.5	0.5		
	SMBC, SMBD	V _{SS} – 0.3	6.0		
	TS1, TS2, PRES	–0.3 V	V _{REG25} + 0.3 V		
	DSG	-0.3	V _{PACK} + 20 V or V _{SS} + 34 V, whichever is lower		
Output voltage, V _O	СНС	-0.3	V _{BAT} + 20 V or V _{SS} + 34 V, whichever is lower	V	
	FUSE	-0.3	34		
	RBI, REG25	-0.3	2.75		
	REG33	-0.3	5.0		
Maximum VSS current, Is	S	50		mA	
Current for cell balancing	, I _{СВ}		10	ША	
Functional Temperature,	T _{FUNC}	-40	110	°C	
Lead temperature (solder	ing, 10 s), T _{SOLDER}		300	°C	
Storage temperature, T _{stg}]	-65	150	°C	

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT	
	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins except pins 3 to 6	±2000		
V _(ESD)	discharge		Pins 3 to 6	±1000	V	
		Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		±500		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

			MIN	NOM MAX	UNIT
Cumulu under		VCC, PACK		25	V
Supply voltage		BAT	3.8	V _{VC2} + 5	V
V _{STARTUP}		Start up voltage at PACK	3	5.5	V
		VC1, BAT	V _{VC2}	V _{VC2} + 5	
		VC2	V _{VC3}	V _{VC3} + 5	
		VC3	V _{VC4}	V _{VC4} + 5	
V _{IN}	Input voltage range	VC4	V _{SRP}	V _{SRP} + 5	V
VIN II		VCn - VC(n+1), (n=1, 2, 3, 4)	0	5	
		PACK		25	
		SRP to SRN	-0.2	0.2	
C _{REG33}	External 3.3-V REG capacitor		1		μF
C _{REG25}	External 2.5-V REG capacitor		1		μF
T _{OPR}	Operating temperature		-40	85	°C

6.4 Thermal Information

		bq3055	
	THERMAL METRIC ⁽¹⁾	TSSOP (DBT)	UNIT
		30 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	73.1	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	17.5	°C/W
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	34.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.3	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	30.3	°C/W
R _{0JC(bot)}	Junction-to-case(bottom) thermal resistance	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: Supply Current

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Normal	CHG on, DSG on, no Flash write		410		
	I _{CC} Sleep	CHG on, DSG on, no SBS communication		160		
ICC		CHG off, DSG off, no SBS communication		80		μΑ
	Shutdown				3.7	

6.6 Power-On Reset (POR)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT-}	Negative-going voltage input	At REG25	1.9	2	2.1	V
V _{HYS}	POR Hysteresis	At REG25	65	125	165	mV

6.7 Wake From Sleep

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{WAKE} N		V _{WAKE}	0.2	1.2	2	
		V _{WAKE}	0.4	2.4	3.6	
	V _{WAKE} Threshold	V _{WAKE}	2	5	6.8	mV
		V _{WAKE}	5.3	10	13	
V _{WAKE_TCO}	Temperature drift of VWAKE accuracy			0.5%		°C
t _{WAKE}	Time from application of current and wake of bq3055			0.2	1	ms

6.8 RBI RAM Backup

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _(RBI) RBI data-retention input co		$VRBI > V_{(RBI)MIN}, VCC < VIT$		20	1100	
	RBI data-retention input current	VRBI > V _{(RBI)MIN} , VCC < VIT, T _A = 0°C to 70°C			500	nA
V _(RBI)	RBI data-retention voltage		1			V

6.9 3.3-V Regulator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REG33}	Regulator output voltage	3.8 V < VCC or BAT \leq 5 V, I _{CC} \leq 4 mA	2.4		3.5	
		5V < VCC or BAT \leq 6.8 V, I _{CC} \leq 13 mA	3.1	3.3	3.5	V
		6.8 V < VCC or BAT \leq 20 V, I _{CC} \leq 30 mA	3.1	3.3	3.5	
I _{REG33}	Regulator output current		2			mA
$\Delta V_{(VDDTEMP)}$	Regulator output change with temperature	VCC or BAT = 14.4 V, I_{REG33} = 2 mA		0.2%		
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, I _{REG33} = 2 mA		1	13	mV
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, I _{REG33} = 2 mA		5	18	mV
	Current limit	VCC or BAT = 14.4 V, V _{REG33} = 3 V			70	mA
(REG33MAX)		VCC or BAT = 14.4 V, V _{REG33} = 0 V			33	

6.10 2.5-V Regulator

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REG25}	Regulator output voltage	I _{REG25} = 10 mA	2.35	2.5	2.55	V
I _{REG25}	Regulator output current		3			mA
$\Delta V_{(VDDTEMP)}$	Regulator output change with temperature	VCC or BAT = 14.4 V, I_{REG25} = 2 mA		0.25%		
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, $I_{REG25} = 2 \text{ mA}$		1	4	mV
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, I_{REG25} = 2 mA		20	40	mV
I _(REG33MAX)	Current limit	VCC or BAT = 14.4 V, V_{REG25} = 2.3 V			65	
		VCC or BAT = 14.4 V, $V_{REG25} = 0 V$			23	mA

6.11 PRES, SMBD, SMBC

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input	PRES, SMBD, SMBC	2.0			V
V _{IL}	Low-level input	PRES, SMBD, SMBC			0.8	V
V _{OL}	Low-level output voltage	SMBD, SMBC			0.4	V
C _{IN}	Input capacitance	PRES, SMBD, SMBC		5		pF
I _{LKG}	Input leakage current	PRES, SMBD, SMBC			1	μA
I _{WPU}	Weak pullup current	$\overline{\text{PRES}}$, $V_{\text{OH}} = V_{\text{REG25}} - 0.5 \text{ V}$	60		120	μA
R _{PD(SMBx)}	SMBC, SMBD pulldown	$T_{A} = -40$ to 100°C	550	775	1000	kΩ

6.12 CHG, DSG FET Drive

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$ V_{O(FETONDSG)} = V_{(DSG)} - V_{PACK}, V_{GS} \\ connect 10 M\Omega, VCC 3.8 V to 8.4 V $	8	9.7	12	V
V _(FETON)	Output voltage, charge, and discharge FETs on		9	11	12	
		$ V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, V_{GS} $ connect 10 MΩ, VCC 3.8 V to 8.4 V	8	9.7	12	
		$V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, V_{GS}$ connect 10 M Ω , VCC > 8.4 V	9	11	12	
V	Output voltage, charge and	$VO_{(FETOFFDSG)} = V_{(DSG)} - V_{PACK}$	-0.4		0.4	V
V _(FETOFF)	discharge FETs off	$V_{O(FETOFFCHG)} = V_{(CHG)} - V_{BAT}$	-0.4		0.4	v
		$\begin{array}{l} C_L = 4700 \text{ pF} \\ R_G = 5.1 \text{ k}\Omega \\ \text{VCC} < 8.4 \\ \text{V}_{\text{DSG}} : \text{V}_{\text{BAT}} \text{ to } \text{V}_{\text{BAT}} + 4 \text{ V} \\ \text{V}_{\text{CHG}} : \text{V}_{\text{PACK}} \text{ to } \text{V}_{\text{PACK}} + 4 \text{ V} \end{array}$		800	1400	
t _r	Rise time	$\begin{array}{l} C_L = 4700 \text{ pF} \\ R_G = 5.1 \text{ k}\Omega \\ \text{VCC} > 8.4 \\ \text{V}_{DSG} : \text{V}_{BAT} \text{ to } \text{V}_{BAT} + 4 \text{ V} \\ \text{V}_{CHG} : \text{V}_{PACK} \text{ to } \text{V}_{PACK} + 4 \text{ V} \end{array}$		200	500	μs
t _f	Fall time	$\begin{array}{l} C_L = 4700 \ \text{pF} \\ R_G = 5.1 \ \text{k}\Omega \\ V_{DSG} : V_{BAT} + V_{O(FETONDSG)} \ \text{to} \ V_{BAT} \\ + 1 \ \text{V} \\ V_{CHG} : V_{PACK} + V_{O(FETONCHG)} \ \text{to} \\ V_{PACK} + 1 \ \text{V} \end{array}$		80	200	μs

6.13 PCHG FET Drive

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{PU_PCHG}	PCHG pullup voltage				V_{CC}	V
V _{OL_PCHG}	PCHG output voltage low	I _{OL} = 1 mA	0.3			V

6.14 FUSE

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH(FUSE)}	High-level FUSE output	VCC = 3.8 V to 9 V	2.4		8.5	V
		VCC = 9 V to 25 V	7	8	9	
N	Weak pullup current in off state ⁽¹⁾		2.8			V
V _{IH(FUSE)}				100		nA
t _{R(FUSE)}	FUSE output rise time	$\begin{array}{l} C_L = 1 \text{ nF, VCC} = 9 \text{ V to } 25 \text{ V,} \\ \text{V}_{OH(FUSE)} = 0 \text{ V to } 5 \text{ V} \end{array}$		5	20	μs
Z _{O(FUSE)}	FUSE output impedance			2	5	kΩ

(1) Verified by design. Not production tested.

6.15 Coulomb Counter

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range	SRP – SRN	-0.20		0.25	V
Conversion time	Single conversion		250		ms
Resolution (no missing codes)		16			Bits
Effective resolution	Single conversion, signed	15			Bits
Offset error	Post calibrated		10		μV
Offset error drift			0.3	0.5	µV/°C
Full-scale error		-0.8%	0.2%	0.8%	
Full-scale error drift				150	PPM/°C
Effective input resistance		2.5			mΩ

6.16 VC1, VC2, VC3, VC4

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range	VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS	-0.20		8	V
V _{IN}	Conversion time	Single conversion		32		ms
	Resolution (no missing codes)		16			Bits
	Effective resolution	Single conversion, signed	15			Bits
P	$R_{DS(ON)}$ for internal FET at V_{DS} > 2 V	V _{DS} = VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS	200	310	430	
R _(BAL)	${\sf R}_{{\sf DS}({\sf ON})}$ for internal FET at ${\sf V}_{{\sf DS}}$ > 4 V	$\label{eq:VDS} \begin{array}{l} V_{DS} = VC4 - VC3, VC3 - VC2, \\ VC2 - VC1, VC1 - VSS \end{array}$	60	125	230	Ω

6.17 TS1, TS2

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R	Internal pullup resistor		16.5	17.5	19	KΩ
R _{DRIFT}	Internal pullup resistor drift from 25°C				200	PPM/°C
R _{PAD}	Internal pin pad resistance			84		Ω
	Input voltage range	TS1 – VSS, TS2 – VSS	-0.20		0.8 × V _{REG25}	V
V _{IN}	Conversion time			16		ms
	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

6.18 Internal Temperature Sensor

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Temperature sensor voltage		-1.9	-2	-2.1	mV/°C
V	Conversion time			16		ms
V _(TEMP)	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

6.19 Internal Thermal Shutdown

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{MAX2}	Maximum REG33 temperature		125		175	°C
T _{RECOVER}	Recovery hysteresis temperature			10		°C
t _{PROTECT}	Protection time			5		μs

6.20 High-Frequency Oscillator

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where T_A = -40°C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(OSC)	Operating frequency of CPU Clock			4.194		MHz
£	– (1)(2)	$T_A = -20^{\circ}C$ to $70^{\circ}C$	-2%	±0.25%	2%	
T(EIO)	Frequency error ⁽¹⁾⁽²⁾	$T_A = -40^{\circ}C$ to $85^{\circ}C$	-3%	±0.25%	3%	
t _(SXO)	Start-up time ⁽³⁾	$T_A = -25^{\circ}C$ to $85^{\circ}C$		3	6	ms

The frequency error is measured from 4.194 MHz. (1)

(2)

The frequency drift is included and measured from the trimmed frequency at $V_{REG25} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. The start-up time is defined as the time it takes for the oscillator output frequency to be ±3% when the device is already powered. (3)

6.21 Low-Frequency Oscillator

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(LOSC)	Operating frequency			32.768		kHz
£	– (1)(2)	$T_A = -20^{\circ}C$ to $70^{\circ}C$	-1.5%	±0.25%	1.5%	
T _(LEIO)	Frequency error ⁽¹⁾⁽²⁾	$T_A = -40^{\circ}C$ to $85^{\circ}C$	-2.5%	±0.25%	2.5%	
t _(LSXO)	Start-up time ⁽³⁾	$T_A = -25^{\circ}C \text{ to } 85^{\circ}C$			100	μs

(1) The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, $T_A = 25^{\circ}C$.

(2) The frequency error is measured from 32.768 kHz.

(3) The start-up time is defined as the time it takes for the oscillator output frequency to be $\pm 3\%$.

6.22 Internal Voltage Reference

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF}	Internal reference voltage		1.215	1.225	1.230	V
V		$T_A = -25^{\circ}C$ to $85^{\circ}C$		±80		PPM/°C
VREF_DRIFT	Internal reference voltage drift	$T_A = 0^{\circ}C$ to $60^{\circ}C$		±50		PPIVI/ C

6.23 Flash

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Year
		Data Flash	20k			Cuala
	Flash programming write-cycles	Instruction Flash	1k			Cycle
I _{CC(PROG_DF)}	Data Flash-write supply current	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$		3	4	mA
I _{CC(ERASE_DF)}	Data Flash-erase supply current	$T_A = -40^{\circ}C$ to $85^{\circ}C$		3	18	mA

(1) Verified by design. Not production tested.

6.24 OCD Current Protection

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	OCD detection threshold voltage range, typical	RSNS = 0	50		200	m)/
V _(OCD)		RSNS = 1	25		100	mV
A)/	OCD detection threshold voltage	RSNS = 0		10		mV
ΔV _(OCDT) program step	program step	RSNS = 1		5		mv
V _(OFFSET)	OCD offset		-10		10	mV
V _(Scale_Err)	OCD scale error		-10%		10%	
t _(OCDD)	Overcurrent in discharge delay		1		31	ms
t _(OCDD_STEP)	OCDD step options			2		ms
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and short-circuit delay time accuracy	Accuracy of typical delay time	-20%		20%	

6.25 SCD1 Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
14	SCD1 detection threshold voltage range, typical	RSNS = 0	100		450	
V _(SDC1)		RSNS = 1	50		225	mV
$\Delta V_{(SCD1T)}$	SCD1 detection threshold voltage program step	RSNS = 0		50		
		RSNS = 1		25		mV
V _(OFFSET)	SCD1 offset		-10		10	mV
V _(Scale_Err)	SCD1 scale error		-10%		10%	
	Short-circuit in discharge delay	AFE.STATE_CNTL[SCDDx2] = 0	0		915	
t(SCD1D)		AFE.STATE_CNTL[SCDDx2] = 1	0		1830	μs
	SCD1D stop antions	AFE.STATE_CNTL[SCDDx2] = 0		61		
t(SCD1D_STEP)	SCD1D step options	AFE.STATE_CNTL[SCDDx2] = 1		122		μs
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and short-circuit delay time accuracy	Accuracy of typical delay time	-20%		20%	

6.26 SCD2 Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	SCD2 detection threshold	RSNS = 0	100		450	m)/
V _(SDC2)	voltage range, typical	RSNS = 1	50		225	mV
• • •	SCD2 detection threshold voltage program step	RSNS = 0		50		
$\Delta V_{(SCD2T)}$		RSNS = 1		25		mV
V _(OFFSET)	SCD2 offset		-10		10	mV
V _(Scale_Err)	SCD2 scale error		-10%		10%	
	Short-circuit in discharge delay	AFE.STATE_CNTL[SCDDx2] = 0	0		458	
t(SCD1D)		AFE.STATE_CNTL[SCDDx2] = 1	0		915	μs
	CODOD atom antiana	AFE.STATE_CNTL[SCDDx2] = 0		30.5		
t(SCD2D_STEP)	SCD2D step options	AFE.STATE_CNTL[SCDDx2] = 1		61		μs
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and short-circuit delay time accuracy	Accuracy of typical delay time	-20%		20%	

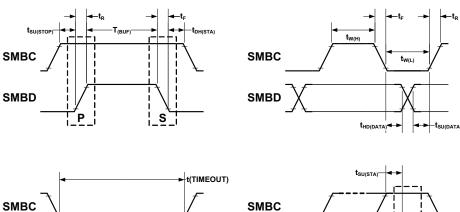
6.27 SCC Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40°C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	SCC detection threshold voltage range, typical	RSNS = 0	-100		-300	m)/
V _(SCCT)		RSNS = 1	-50		-225	mV
SCC detection threshold voltage	RSNS = 0		-50		mV	
$\Delta V_{(SCCDT)}$	CDT) program step	RSNS = 1		-25		mv
V _(OFFSET)	SCC offset		-10		10	mV
V _(Scale_Err)	SCC scale error		-10%		10%	
t _(SCCD)	Short-circuit in charge delay		0		915	ms
t _(SCCD_STEP)	SCCD step options			61		ms
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and short-circuit delay time accuracy	Accuracy of typical delay time	-20%		20%	

Copyright © 2010–2015, Texas Instruments Incorporated

6.28 SBS Timing Requirements


			MIN	ТҮР	MAX	UNIT
f _{SMB}	SMBus operating frequency	Slave mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	Master mode, no clock low slave extend		51.2		kHz
t _{BUF}	Bus free time between start and	stop	4.7			μs
t _{HD:STA}	Hold time after (repeated) start		4.0			μs
t _{SU:STA}	Repeated start setup time		4.7			μs
t _{SU:STO}	Stop setup time		4.0			μs
t _{HD:DAT}	Data hold time		300			ns
t _{SU:DAT}	Data setup time		250			ns
t _{TIMEOUT}	Error signal/detect	See ⁽¹⁾	25		35	ms
t _{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period	See ⁽²⁾		D	isabled	
t _{HIGH}	Clock high period	See ⁽²⁾	4.0		50	μs
t _{LOW:SEXT}	Cumulative clock low slave extend time	See ⁽³⁾			25	ms
t _{LOW:MEXT}	Cumulative clock low master extend time	See ⁽⁴⁾			10	ms
t _F	Clock/data fall time	See ⁽⁵⁾			300	ns
t _R	Clock/data rise time	See ⁽⁶⁾			1000	ns

(1)

The bq3055 times out when any clock low exceeds $t_{TIMEOUT}$. t_{HIGH} , Max, is the minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving bq3055 that is in progress. This specification is valid when the THIGH_VAL=0. If THIGH_VAL = 1, then the value of THIGH is set by THIGH_1,2 and the time-out is (2) not SMBus standard.

tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop. (3)

- $t_{LOW:MEXT}$ is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop. (4)
- Rise time tR = $V_{ILMAX} 0.15$) to ($V_{IHMIN} + 0.15$) Fall time tF = 0.9 V_{DD} to ($V_{ILMAX} 0.15$) (5)
- (6)

SMBD

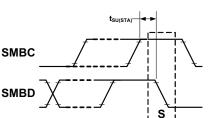
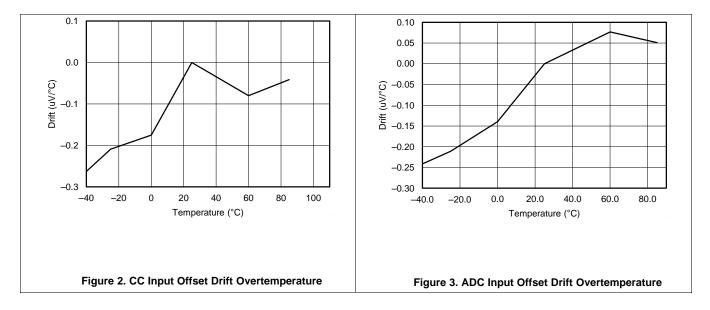



Figure 1. SMBus Timing Diagram

6.29 Typical Characteristics

7 Parameter Measurement Information

7.1 Battery Parameter Measurements

7.1.1 Charge and Discharge Counting

The bq3055 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from –0.25 V to 0.25 V. The bq3055 detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq3055 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

7.1.2 Voltage

The bq3055 updates the individual series cell voltages at 0.25-second intervals. The internal ADC of the bq3055 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the CEDV gas-gauging.

7.1.3 Current

The bq3055 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5-m Ω to 20-m Ω typ. sense resistor.

7.1.4 Auto Calibration

The bq3055 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq3055 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s.

7.1.5 Temperature

The bq3055 has an internal temperature sensor and inputs for two external temperature sensors. All three temperature sensor options are individually enabled and configured for cell or FET temperature. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which may be of a higher temperature type.

7.1.6 Communications

The bq3055 uses SMBus v1.1 with Master Mode and packet error checking (PEC) options per the SBS specification.

7.1.6.1 SMBus On and Off State

The bq3055 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within 1 ms.

7.1.6.2 SBS Commands

See the bq3055 Technical Reference Manual (SLUU440) for further details.

8 Detailed Description

8.1 Overview

The bq3055 device measures the voltage, temperature, and current to determine battery capacity and state-ofcharge (SOC). The bq3050 monitors charge and discharge activity by sensing the voltage across a small value resistor (5 m Ω to 20 m Ω , typical) between the SRP and SRN pins and in series with the battery. By integrating charge passing through the battery, the battery's SOC is adjusted during battery charge or discharge. Measurements of OCV and charge integration determine chemical SOC.

The Qmax values are taken from a cell manufacturers' data sheet multiplied by the number of parallel cells, and is also used for the value in **Design Capacity**. It uses the OCV and Qmax value to determine *StateOfCharge()* on battery insertion, device reset, or on command. The *FullChargeCapacity()* is reported as the learned capacity available from full charge until *Voltage()* reaches the EDV0 threshold. As *Voltage()* falls below the **Shutdown Voltage** for **Shutdown Time** and has been out of SHUTDOWN mode for at least **Shutdown Time**, the *PF Flags1 ()* [VSHUT] bit is set. For additional details, see *bq3055 Technical Reference Manual* (SLUU440).

Fuel gauging is derived from the Compensated End of Discharge Voltage (CEDV) method, which uses a mathematical model to correlate remaining state of charge (RSOC) and voltage near to the end of discharge state. This requires a full-discharge cycle for a single-point FCC update. The implementation models cell voltage (OCV) as a function of battery SOC, temperature, and current. The impedance is also a function of SOC and temperature, which can be satisfied by using seven parameters: EMF, C0, R0, T0, R1, TC, and C1.

8.1.1 Configuration

8.1.1.1 Oscillator Function

The bq3055 fully integrates the system oscillators and does not require any external components to support this feature.

8.1.1.2 System Present Operation

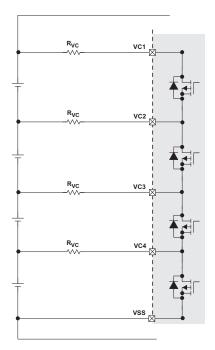
The bq3055 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external system, the bq3055 detects this as system present.

8.1.1.3 2-, 3-, or 4-Cell Configuration

In a 2-cell configuration, VC1 is shorted to VC2 and VC3. In a 3-cell configuration, VC1 is shorted to VC2.

8.1.1.4 Cell Balancing

The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device's internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time. Higher cell balance current can be achieved by using an external cell balancing circuit. In external cell balancing mode, only one cell at a time can be balanced.


The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of all cells.

8.1.1.4.1 Internal Cell Balancing

When internal cell balancing is configured, the cell balance current is defined by the external resistor R_{VC} at the VCx input. See Figure 4.

Overview (continued)

8.1.1.4.2 External Cell Balancing

When external cell balancing is configured, the cell balance current is defined by R_B . See Figure 5. Only one cell at a time can be balanced.

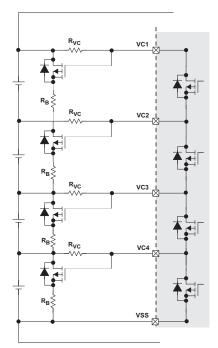
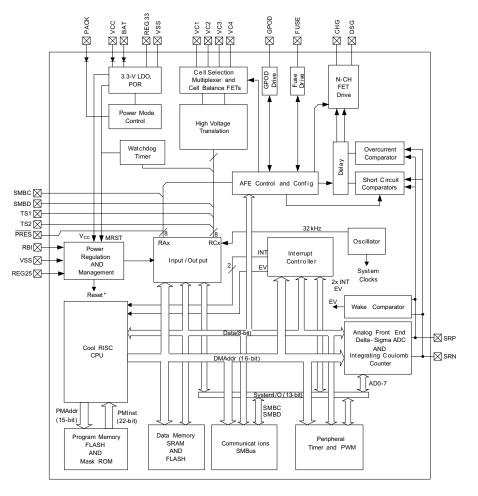



Figure 5. External Cell Balancing with R_B

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Primary (1st Level) Safety Features

The bq3055 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:

- Cell Overvoltage and Undervoltage Protection
- Charge and Discharge Overcurrent
- Short-Circuit
- Charge and Discharge Overtemperature
- AFE Watchdog

8.3.2 Secondary (2nd Level) Safety Features

The secondary safety features of the bq3055 can be used to indicate more serious faults through the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety protection features include:

- Safety Overvoltage
- Safety Overcurrent in Charge and Discharge
- Safety Overtemperature in Charge and Discharge
- Charge FET, Discharge FET, and Precharge FET Faults
- Cell Imbalance Detection

Feature Description (continued)

- Fuse Blow by Secondary Voltage Protection IC
- AFE Register Integrity Fault (AFE_P)
- AFE Communication Fault (AFE_C)

8.3.3 Charge Control Features

The bq3055 charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Reduce the charge difference of the battery cells in fully charged state of the battery pack gradually using a
 voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to
 be active. This prevents fully charged cells from overcharging and causing excessive degradation and also
 increases the usable pack energy by preventing premature charge termination.
- · Supports precharging and zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicate charge status through charge and discharge alarms

8.3.4 Gas Gauging

The bq3055 uses the CEDV algorithm to measure and calculate the available capacity in battery cells. The bq3055 accumulates a measure of charge and discharge currents and compensates the charge current measurement for the temperature and state-of-charge of the battery. The bq3055 estimates self-discharge of the battery and also adjusts the self-discharge estimation based on temperature. See the *bq3055 Technical Reference Manual* (SLUU440) for further details.

8.3.5 Lifetime Data Logging Features

The bq3055 offers limited lifetime data logging for the following critical battery parameters:

- Lifetime Maximum Temperature
- Lifetime Minimum Temperature
- Lifetime Maximum Battery Cell Voltage
- Lifetime Minimum Battery Cell Voltage

8.3.6 Authentication

- The bq3055 supports authentication by the host using SHA-1.
- SHA-1 authentication by the gas gauge is required for unsealing and full access.

8.4 Device Functional Modes

The bq3055 supports three power modes to reduce power consumption:

- In NORMAL Mode, the bq3055 performs measurements, calculations, protection decisions, and data updates in 0.25-s intervals. Between these intervals, the bq3055 is in a reduced power stage.
- In SLEEP Mode, the bq3055 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq3055 is in a reduced power stage. The bq3055 has a wake function that enables exit from Sleep mode when current flow or failure is detected.
- In SHUTDOWN Mode, the bq3055 is completely disabled.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The bq3055 gas gauge is a primary protection device that can be used with a 2-series, 3-series, or 4-series Lilon or Li-Polymer battery pack. To implement and design a comprehensive set of parameters for a specific battery pack, the user needs the bqEVSW tool, which is a graphical user-interface tool installed on a PC during development. The firmware installed in the product has default values, which are summarized in the *bq3055 Technical Reference Manual* (SLUU440). Using the bqEVSW tool, these default values can be changed to cater to specific application requirements during development once the system parameters are known, such as faulttrigger thresholds for protection, enable or disable certain features for operation, configuration of cells, and more.

9.2 Typical Application

In a typical application, the bq3055 is typically paired with a 2nd-level overvoltage protection device to provide an independent level of voltage protection. Figure 6 shows a typical application.

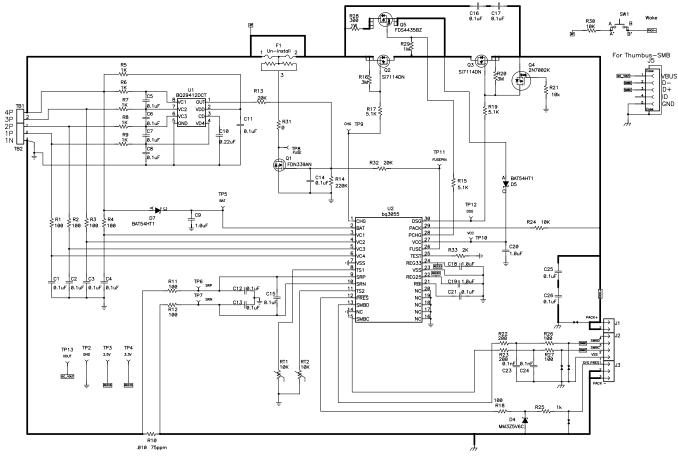


Figure 6. Application Schematic

Typical Application (continued)

9.2.1 Design Requirements

For the bq3055 design example, use the parameters in Table 1 as input parameters.

DESIGN PARAMETER	VALUE OR STATE
Cell Configuration	3s2p (4-series with 1 Parallel)
Design Capacity	4400 mAh
Device Chemistry	Chem ID 100 (LiCoO2/graphitized carbon)
Cell Overvoltage (per cell)	4500 mV
Cell Undervoltage (per cell)	2200 mV
1st Tier Overcurrent in CHARGE Mode	6000 mA
1st Tier Overcurrent in DISCHARGE Mode	–6000 mA
AFE Overcurrent in CHARGE Mode	0.120 V/Rsense across SRP, SRN
AFE Short-Circuit in DISCHARGE Mode	0.450 V/Rsense across SRP, SRN
AFE Short-Circuit in CHARGE Mode	0.250V/Rsense across SRP, SRN
Overtemperature in CHARGE Mode	55°C
Overtemperature in DISCHARGE Mode	60°C
SAFE Pin Activation Enabled	No
Safety Overvoltage (per cell)	4600 mV
Shutdown Voltage	5250 mV
Cell Balancing Enabled	Yes
Internal or External Temperature Sensor	External Enabled
SMB BROADCAST Mode	Disabled
PRES Feature Enabled	No

9.2.2 Detailed Design Procedure

9.2.2.1 High-Current Path

The high-current path begins at the PACK+ terminal of the battery pack. As charge current travels through the pack, it finds its way through protection FETs, a chemical fuse, the lithium-ion cells and cell connections, and the sense resistor, and then returns to the PACK– terminal. In addition, some components are placed across the PACK+ and PACK– terminals to reduce effects from electrostatic discharge.

9.2.2.1.1 Protection FETs

The N-channel charge and discharge FETs must be selected for a given application (Figure 7). Most portable battery applications are a good match for the CSD17308Q3. The TI CSD17308Q3 is an 47A-A, 30-V device with Rds(on) of 8.2 m Ω when the gate drive voltage is 10 V.

If a precharge FET is used, R28 is calculated to limit the precharge current to the desired rate. Be sure to account for the power dissipation of the series resistor. The precharge current is limited to $(V_{charger} - V_{bat})/R28$ and maximum power dissipation is $(V_{charger} - V_{bat})^2/R28$.

The gates of all protection FETs are pulled to the source with a high-value resistor between the gate and source to ensure they are turned off if the gate drive is open.

Capacitors C16 and C17 help protect the FETs during an ESD event. The use of two devices ensures normal operation if one of them becomes shorted. To have good ESD protection, the copper trace inductance of the capacitor leads must be designed to be as short and wide as possible. Ensure that the voltage rating of both C16 and C17 are adequate to hold off the applied voltage if one of the capacitors becomes shorted.

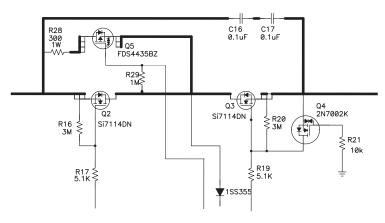


Figure 7. bq3055 Protection FETs

9.2.2.1.2 Chemical Fuse

The chemical fuse (Sony Chemical, Uchihashi, and so forth) is ignited under command from either the bq294705 secondary voltage protection IC or from the FUSE pin of the gas gauge. Either event applies a positive voltage to the gate of Q1, shown in Figure 8, which then sinks current from the third terminal of the fuse, causing it to ignite and open permanently.

It is important to carefully review the fuse specifications and match the required ignition current to that available from the N-channel FET. Ensure that the proper voltage, current, and Rds(on) ratings are used for this device. The fuse control circuit is discussed in detail in *FUSE Circuitry*.

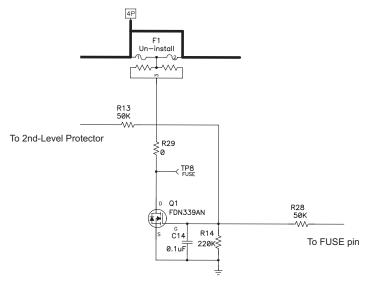


Figure 8. FUSE Circuit

9.2.2.1.3 Lithium-Ion Cell Connections

The important thing to remember about the cell connections is that high current flows through the top and bottom connections; therefore, the voltage sense leads at these points must be made with a Kelvin connection to avoid any errors due to a drop in the high-current copper trace. The location marked 4P in Figure 9 indicates the Kelvin connection of the most positive battery node. The connection marked 1N is equally important. The VC5 pin (a ground reference for cell voltage measurement), which is in the older generation devices, is not in the bq3055 device. Hence, the single-point connection at 1N to the low-current ground is needed to avoid an undesired voltage drop through long traces while the gas gauge is measuring the bottom cell voltage.

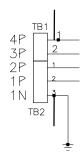


Figure 9. Lithium-Ion Cell Connections

9.2.2.1.4 Sense Resistor

As with the cell connections, the quality of the Kelvin connections at the sense resistor is critical. The sense resistor must have a temperature coefficient no greater than 75 ppm to minimize current measurement drift with temperature (Figure 10). Choose the value of the sense resistor to correspond to the available overcurrent and short-circuit ranges of the bq3055. Select the smallest value possible to minimize the negative voltage generated on the bq3055 V_{SS} nodes during a short-circuit. This pin has an absolute minimum of –0.3 V. For a pack with two parallel cylindrical cells, 10 m Ω is generally ideal. Parallel resistors can be used as long as good Kelvin sensing is ensured.

The ground scheme of bq3055 is different from the older generation devices. In previous devices, the device ground (or low-current ground) is connected to the SRN side of the Rsense resistor pad. The bq3055, however, connects the low-current ground on the SRP side of the Rsense resistor pad, close to the battery 1N terminal (see *Lithium-Ion Cell Connections*). This is because the bq3055 has one less VC pin (a ground reference pin VC5) compared to the previous devices. The pin was removed and was internally combined to SRP.

Figure 10. Sense Resistor

9.2.2.1.5 ESD Mitigation

A pair of series 0.1-µF ceramic capacitors is placed across the PACK+ and PACK– terminals to help in the mitigation of external electrostatic discharges. The two devices in series ensure continued operation of the pack if one of the capacitors becomes shorted.

Optionally, a tranzorb, such as the SMBJ2A, can be placed across the terminals to further improve ESD immunity.

9.2.2.2 Gas Gauge Circuit

The Gas Gauge Circuit includes the bq3055 and its peripheral components. These components are divided into the following groups: Differential Low-Pass Filter, Power Supply Decoupling/RBI, System Present, SMBus Communication, FUSE circuit, and LED.

9.2.2.2.1 Differential Low-Pass Filter

As shown in Figure 11, a differential filter must precede the current sense inputs of the gas gauge. This filter eliminates the effect of unwanted digital noise, which can cause offset in the measured current. Even the best differential amplifier has less common-mode rejection at high frequencies. Without a filter, the amplifier input stage may rectify a strong RF signal, which then may appear as a DC offset error.

Five percent tolerance of the components is adequate because capacitor C15 shunts C12/C13, and reduces AC common mode arising from component mismatch. It is also proven to reduce offset and noise error by maintaining µa symmetrical placement pattern and adding ground shielding for the differential filter network.

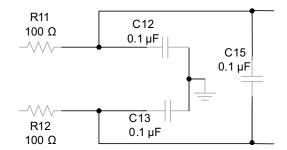


Figure 11. Differential Low-Pass Filter

9.2.2.2.2 Power Supply Decoupling and RBI

Power supply decoupling is important for optimal operation of the bq3055 advanced gas gauges. As shown in Figure 12, a single 1- μ F ceramic decoupling capacitor from REG33 to V_{SS} and REG25 to V_{SS} must be placed adjacent to the IC pins.

The RBI pin is used to supply backup RAM voltage during brief transient power outages. The partial reset mechanism makes use of the RAM to restore the critical CPU registers following a temporary loss of power. A standard 0.1- μ F ceramic capacitor is connected from the RBI pin to ground, as shown in Figure 12.

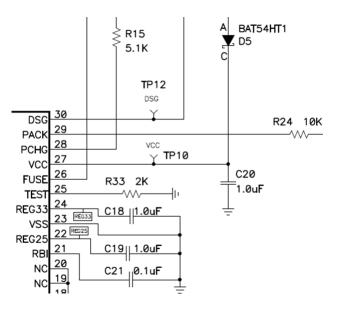
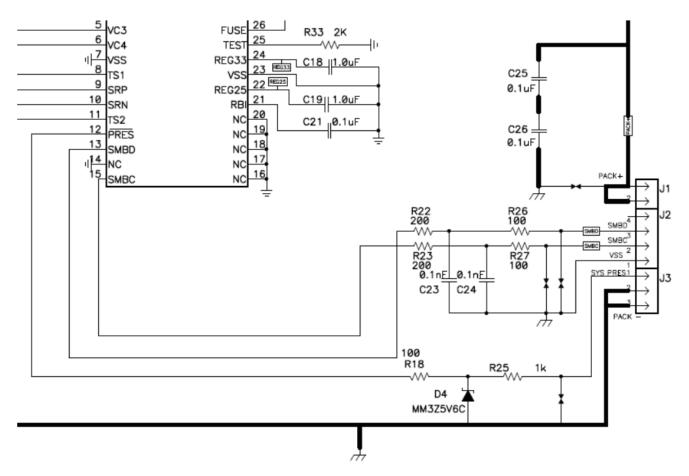



Figure 12. Power Supply Decoupling

9.2.2.2.3 System Present

The System Present signal is used to inform the gas gauge whether the pack is installed into or removed from the system. In the host system, this pin is grounded. The PRES pin of the bq3055 is occasionally sampled to test for system present. To save power, an internal pullup resistor is provided by the gas gauge during a brief 4-µs sampling pulse once per second.

Because the System Present signal is part of the pack connector interface to the outside <u>world</u>, it must be protected from external electrostatic discharge events. An integrated ESD protection on the PRES device pin reduces the external protection requirement to just R25 for an 8-kV ESD contact rating (Figure 13). However, if it is possible that the System Present signal may short to PACK+, then R18 and D3 must be included for high-voltage protection.

9.2.2.2.4 SMBus Communication

Similar to the System Present pin, the SMBus clock and data pins have integrated high-voltage ESD protection circuits that reduce the need for external Zener diode protection. When using the circuit shown in Figure 14, the communication lines can withstand an 8-kV (contact) ESD strike. C23 and C24 are selected with a 100-pF value to meet the SMBus specifications. If it is desirable to provide increased protection with a larger input resistor and/or Zener diode, carefully investigate the signal quality of the SMBus signals under worst-case communication conditions.

The SMbus clock and data lines have internal pulldowns. When the gas gauge senses that both lines are low (such as during removal of the pack), the device performs auto-offset calibration and then goes into sleep mode to conserve power.

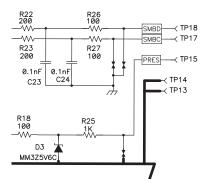


Figure 14. ESD Protection for SMB Communication

9.2.2.2.5 FUSE Circuitry

The FUSE pin of the bq3055 is designed to ignite the chemical fuse if one of the various safety criteria is violated (Figure 15). The FUSE pin also monitors the state of the secondary-voltage protection IC. Q3 ignites the chemical fuse when its gate is high. The 7-V output of the bq29705 is divided by R13 and R14, which provides adequate gate drive for Q1 while guarding against excessive back current into the bq29705 if the FUSE signal is high.

Using C14 is generally a good practice, especially for RFI immunity. C14 may be removed, if desired, because the chemical fuse is a comparatively slow device and is not affected by any sub-microsecond glitches that may come from the SAFE output during the cell connection process.

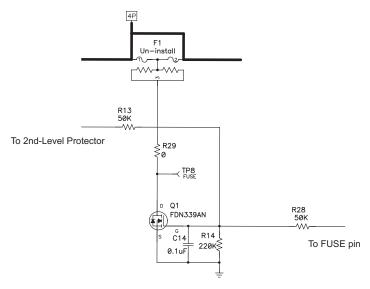


Figure 15. FUSE Circuit

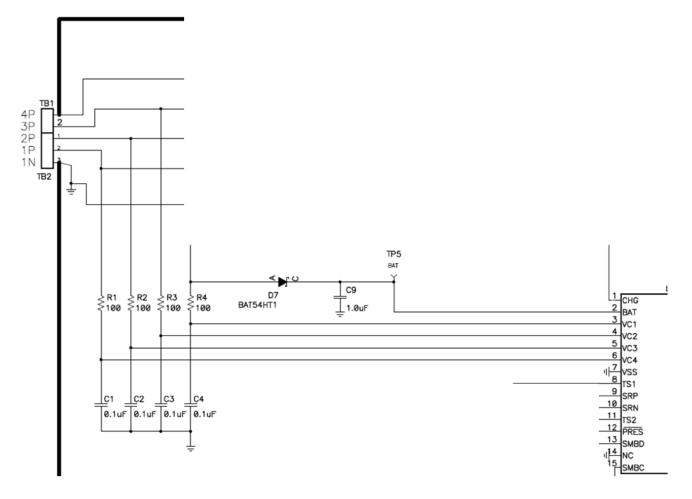
When the bq3055 is commanded to ignite the chemical fuse, the FUSE pin activates to give a typical 8-V output. The new design makes it possible to use a higher Vgs FET for Q1. This improves the robustness of the system, as well as widens the choices for Q1.

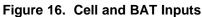
9.2.2.2.6 PFIN Detection

As previously mentioned, the FUSE pin has a dual role on this device. When bq3055 is not commanded to ignite the chemical fuse, the FUSE pin defaults to sense the OUT pin status of the secondary voltage protector. When the secondary voltage protector ignites the chemical fuse, the high voltage is sensed by the FUSE pin, and the bq3055 sets the PFIN flag accordingly.

9.2.2.3 Secondary-Current Protection

The bq3055 provides secondary overcurrent and short-circuit protection, cell balancing, cell voltage multiplexing, and voltage translation. The following sections examine Cell and Battery Inputs, Pack and FET Control, Regulator Output, Temperature Output, and Cell Balancing.


9.2.2.3.1 Cell and Battery Inputs


Each cell input is conditioned with a simple RC filter, which provides ESD protection during cell connect and acts to filter unwanted voltage transients. The resistor value allows some trade-off for cell balancing versus safety protection.

The internal cell balancing FETs in bq3055 provide about typically 310 Ω (310 Ω with cell voltage \geq 2 V. The cell balancing FETs Rds-on reduced to typically 125 Ω with cell voltage \geq 4 V), which can be used to bypass charge current in individual cells that may be overcharged with respect to the others (Figure 16). The purpose of this bypass path is to reduce the current into any one cell during charging to bring the series elements to the same voltage. Series resistors placed between the input pins and the positive series element nodes control the bypass current value. The bq3055 device is designed to take up to 10-mA cell balancing current. Series input resistors between 100 Ω and 1 k Ω are recommended for effective cell balancing.

The BAT input uses a diode (D1) and 1-µF ceramic capacitor (C9) to isolate and decouple it from the cells in the event of a transient dip in voltage caused by a short-circuit event.

Also, as described previously in *High-Current Path*, the top and bottom nodes of the cells must be sensed at the battery connections with a Kelvin connection to prevent voltage sensing errors caused by a drop in the high-current PCB copper.

9.2.2.3.2 External Cell Balancing

bq3055 ZHCS692C – OCTOBER 2010 – REVISED OCTOBER 2015

Internal cell balancing can only support up to 10 mA. External cell balancing provides another option for faster cell balancing. For details, refer to the application note, *Fast Cell Balancing Using External MOSFET* (SLUA420).

9.2.2.3.3 PACK and FET Control

The PACK and V_{CC} inputs provide power to the bq305x from the charger. The PACK input also provides a method to measure and detect the presence of a charger. The PACK input uses a 10-K Ω resistor, whereas the V_{CC} input uses a diode to guard against input transients and prevents malfunction of the date driver during short-circuit events (Figure 17).

The N-channel charge and discharge FETs are controlled with 5.1-K Ω series gate resistors, which provide a switching time constant of a few microseconds. The 3.01-M Ω resistors ensure that the FETs are off in the event of an open connection to the FET drivers. Q4 is provided to protect the discharge FET (Q3) in the event of a reverse-connected charger. Without Q4, Q3 can be driven into its linear region and suffer severe damage if the PACK+ input becomes slightly negative.

Q4 turns on in that case to protect Q3 by shorting its gate to source. To use the simple ground gate circuit, the FET must have a low gate turnon threshold. If it is desired to use a more standard device, such as the 2N7000 as the reference schematic, the gate should be biased up to 3.3 V with a high-value resistor. The bq3055 device uses an external P-channel, precharge FET controlled by GPOD. When selecting the external load resistor, user should take into account the max charger voltage and the Rdson of the internal precharge FET.

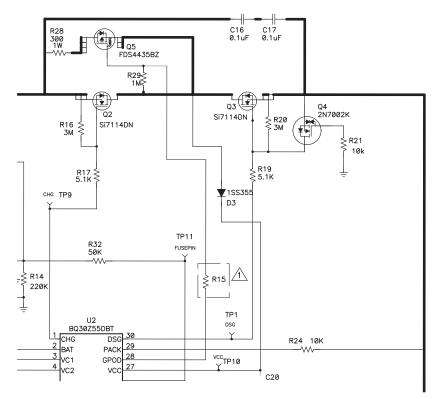


Figure 17. bq3055 PACK and FET Control

9.2.2.3.4 Regulator Output

As mentioned in *Power Supply Decoupling and RBI*, the two low-dropout regulators in the bq3055 require capacitive compensation on the output. The outputs must have a 1-µF ceramic capacitor placed close to the IC terminal pins.

ZHCS692C-OCTOBER 2010-REVISED OCTOBER 2015

9.2.2.3.5 Temperature Output

For the bq3055 device, TS1 and TS2 provide thermistor drive-under program control (Figure 18). Each pin can be enabled with an integrated $18 \cdot k\Omega$ (typical) linearization pullup resistor to support the use of a $10 \cdot k\Omega$ at 25° C (103) NTC external thermistor, such as a Mitsubishi BN35-3H103. The reference design includes two $10 \cdot k\Omega$ thermistors: RT1 and RT2.

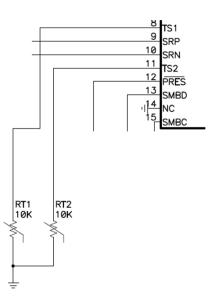


Figure 18. Thermistor Drive

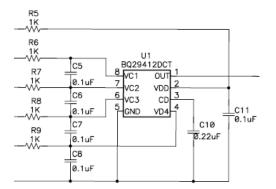
9.2.2.4 Secondary-Overvoltage Protection

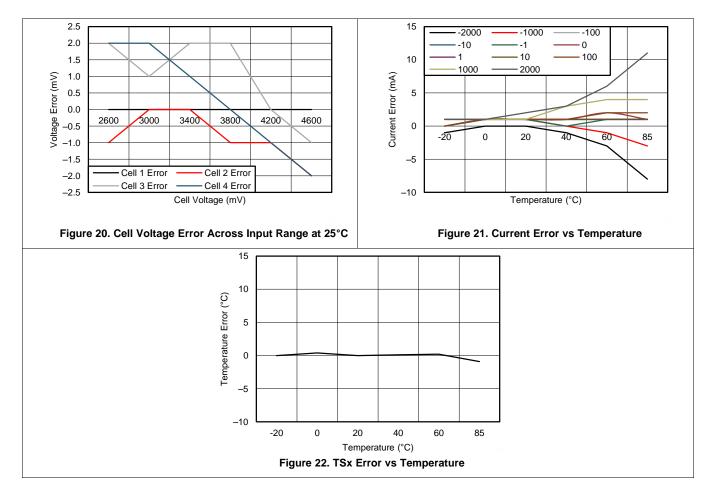
The bq29705 provides secondary-overvoltage protection and commands the chemical fuse to ignite if any cell exceeds the internally referenced threshold. The peripheral components are Cell Inputs and Time Delay Capacitor.

9.2.2.4.1 Cell Inputs

An input filter is provided for each cell input. This comprises the resistors R5, R6, R7, and R9 along with capacitors C5, C6, C7, and C8 (Figure 19). This input network is completely independent of the filter network used as input to thebq3055. To ensure independent safety functionality, the two devices must have separate input filters.

Because the filter capacitors are implemented differentially, a low-voltage device can be used in each case.




Figure 19. bq29705 Cell Inputs and Time-Delay Capacitor

9.2.2.4.2 Time-Delay Capacitor

C10 sets the time delay for activation of the output after any cell exceeds the threshold voltage. The time delay is calculated as td = $1.2 \text{ V} \times \text{DelayCap} (\mu\text{F})/0.18 \mu\text{A}$.

9.2.3 Application Curves

bq3055 ZHCS692C-OCTOBER 2010-REVISED OCTOBER 2015

www.ti.com.cn

9.3 System Example

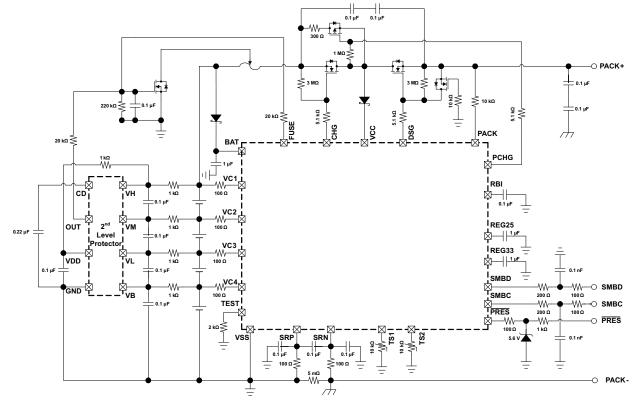


Figure 23. bq3055 Implementation

10 Power Supply Recommendations

Power supply decoupling is important for optimal operation of the bq3055 Gas Gauge. A single 1.0-µF ceramic decoupling capacitor from REG33 to VSS and REG25 to VSS must be placed adjacent to the integrated circuit (IC) pins.

The RBI pin is used to supply backup RAM voltage during brief transient-power outages. The partial reset mechanism makes use of RAM to restore the critical CPU registers following a temporary loss of power. A standard 0.1- μ F ceramic capacitor is connected from the RBI pin to ground.

11 Layout

11.1 Layout Guidelines

The predominant layout concern for the bq3055 is related to the coulomb counter measurement. The external components and PCB layout surrounding the SRP and SRN pins should be carefully considered.

11.2 Layout Example

As shown in Figure 24, a differential filter must precede the current sense inputs of the gas gauge. This filter eliminates the effect of unwanted digital noise, which can cause offset in the measured current. Even the best differential amplifier has less common-mode rejection at high frequencies. Without a filter, the amplifier input stage may rectify a strong RF signal, which then may appear as a DC-offset error.

Five percent tolerance of the components is adequate, because capacitor C15 shunts C12 and C13 and reduces AC common mode arising from a component mismatch. It is important to locate C15 as close as possible to the gas gauge pins. The other components also must be relatively close to the IC. The ground connection of C12 and C13 must be close to the IC. It is also proven to reduce offset and noise error by maintaining a symmetrical placement pattern and adding ground shielding for the differential filter network.

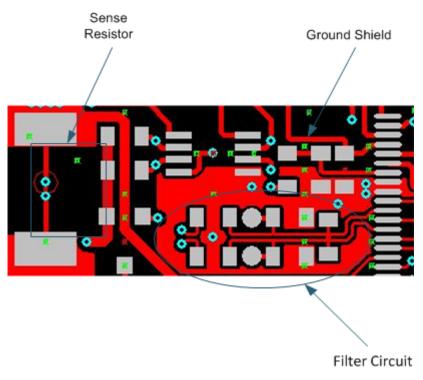


Figure 24. PCB Layout Example

NSTRUMENTS

FXAS

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

相关文档如下:

- 《bq3055 技术参考》手册(文献编号: SLUU440)
- 《采用外部 MOSFET 快速实现电池均衡》(文献编号: SLUA420)

12.2 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 商标

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

重要声明

德州仪器(TI)及其下属子公司有权根据 JESD46 最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2016, 德州仪器半导体技术(上海)有限公司

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ3055DBT	ACTIVE	TSSOP	DBT	30	60	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ3055	Samples
BQ3055DBTR	ACTIVE	TSSOP	DBT	30	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ3055	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

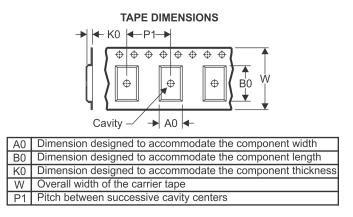
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

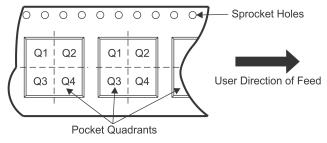
www.ti.com

PACKAGE OPTION ADDENDUM

10-Dec-2020

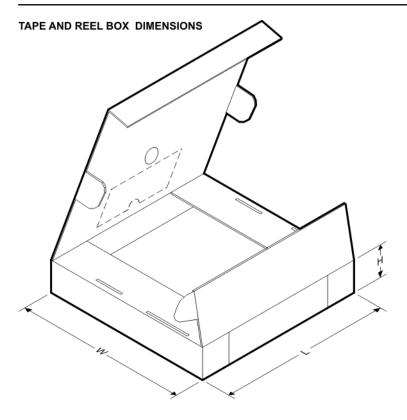

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ3055DBTR	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

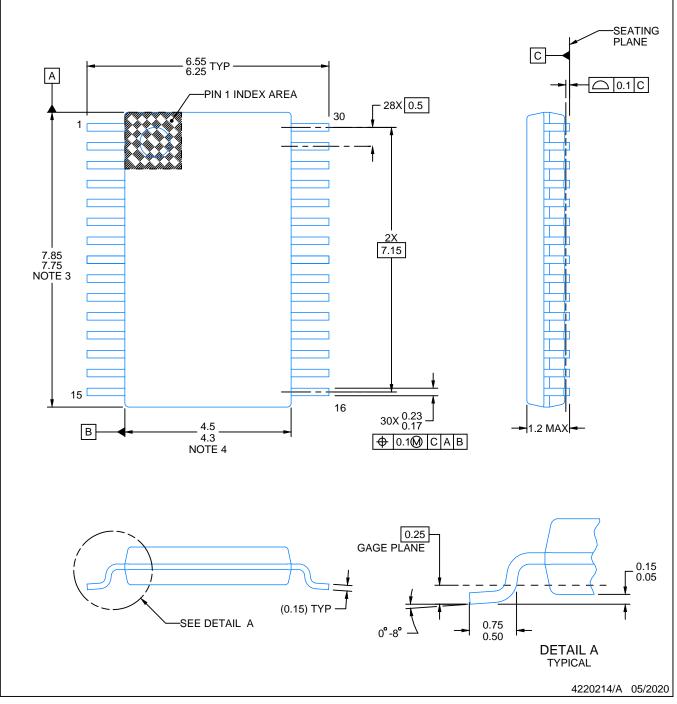
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Feb-2019

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ3055DBTR	TSSOP	DBT	30	2000	350.0	350.0	43.0

DBT0030A

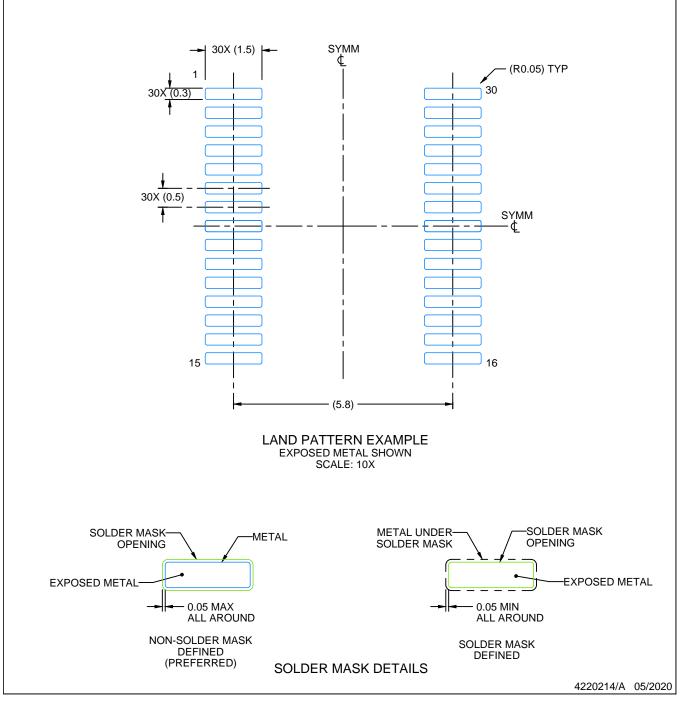
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



DBT0030A

EXAMPLE BOARD LAYOUT

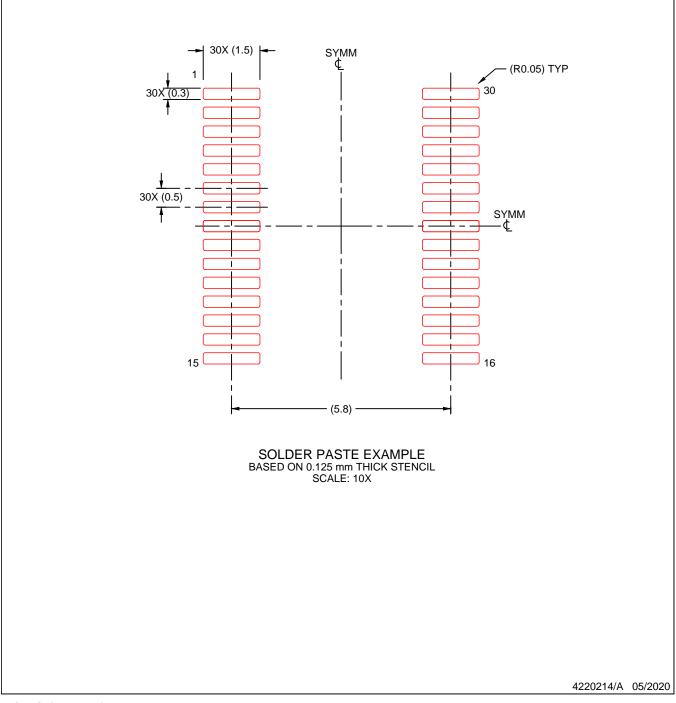
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBT0030A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

Ⅱ 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、 验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用 所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI所提供产品均受TI的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司