Sound Processors for Car Audios # General-Purpose Electronic Volume with Built-in Advanced Switch ## BD37034FV-M #### **General Description** BD37034FV-M is sound processors for car audio. The functions are stereo 5 input selector, volume, 3-band equalizer, loudness, 6ch fader, mixing, HPF for front and rear, LPF for subwoofer, anti-aliasing-filter, Hi-Voltage output, output level detector. Moreover, "Advanced switch circuit", that is ROHM original technology, can reduce various switching noise (ex. No-signal, low frequency likes 20Hz & large signal inputs). "Advanced switch" makes control of microcomputer easier, and can construct high quality car audio system. #### **Features** - Reduce switching noise of volume, mute, fader volume, mixing volume, bass, middle, treble, loudness by using advanced switch circuit [Possible to control all steps]. - Built-in input selector (single 3 / diff 2). - Decrease the number of external components by built-in 3-band equalizer filter, LPF for subwoofer, loudness filter. And, possible to control Q, Gv, fo of 3-band equalizer and fc of LPF, Gv, fo of loudness by I²C BUS control freely. - Built-in mixing volume, Hi-Voltage output. - Built-in anti-aliasing-filter, anti-GSM-noise-filter. - Package is SSOP-B28. Putting input-terminals together and output-terminals together can make PCB layout easier and can makes area of PCB smaller. - It is possible to control by 3.3V / 5V for I²C BUS. - AEC-Q100 Qualified. # **Applications** It is the optimal for the car audio. Besides, it is possible to use for the audio equipment of mini Compo, micro Compo, TV etc with all kinds. ## **Typical Application Circuit** | with all kinds. | |---| | ## | | Fader | | | | Loudness | | 3band P-EQ | | MUTE | | Volume | | | | InputGain | | Input Selector Mix Sel | | 1302 1303 1303 1303 1303 1303 1303 1303 | | 12V 7f7 7f7 | Figure 1. Application Circuit Diagram # **Key Specifications** | ,, - | peomoationo | | |------|---------------------------------|----------------| | | Total harmonic distortion: | 0.004%(Typ.) | | | Maximum input voltage: | 2.1Vrms(Typ.) | | | Cross-talk between selectors: | 100dB(Typ.) | | | Ripple rejection | -65dB(Typ.) | | | Output noise voltage: | 6µVrms(Typ.) | | | Residual output noise voltage: | 4µVrms(Typ.) | | | Operating Range of Temperature: | -40°C to +85°C | package(s) SSOP-B28 W(Typ.) x D(Typ.) x H(Max.) 10.00mm x 7.60mm x 1.35mm SSOP-B28 # **Pin Configuration** Figure 2. Pin configuration **Pin Descriptions** | Fill Descri | Pulons | | | | | |--------------------|------------------|--|--------------------|------------------|--| | Terminal
Number | Terminal
Name | Description | Terminal
Number | Terminal
Name | Description | | 1 | A1 | A input terminal of 1ch | 15 | MUTE | External compulsory mute terminal | | 2 | A2 | A input terminal of 2ch | 16 | LRST/OLDC | Level meter reset terminal Filter output terminal of output level detector | | 3 | B1 | B input terminal of 1ch | 17 | LOUT/OLD | Output terminal for Level meter Output terminal of output level detector | | 4 | B2 | B input terminal of 2ch | 18 | OUTS2 | SW output terminal of 2ch | | 5 | C1 | C input terminal of 1ch | 19 | OUTS1 | SW output terminal of 1ch | | 6 | C2 | C input terminal of 2ch | 20 | OUTR2 | Rear output terminal of 2ch | | 7 | DP1 | D positive input terminal of 1ch | 21 | OUTR1 | Rear output terminal of 1ch | | 8 | DN | D negative input terminal | 22 | OUTF2 | Front output terminal of 2ch | | 9 | DP2 | D positive input terminal of 2ch | 23 | OUTF1 | Front output terminal of 1ch | | 10 | EP1 | E positive input terminal of 1ch | 24 | VCCL | VCCL terminal for power supply | | 11 | EN1 | E negative input terminal of 1ch | 25 | SCL | I ² C Communication clock terminal | | 12 | MIN/EN2 | Mixing input terminalE negative input terminal of 2ch | 26 | SDA | I ² C Communication data terminal | | 13 | EP2 | E positive input terminal of 2ch | 27 | GND | GND terminal | | 14 | VCCH | VCCH terminal for power supply | 28 | VREF | VREF terminal | ## **Block Diagram** Figure 3. Block Diagram ## **Absolute Maximum Ratings** | maximum reatings | | | | |----------------------|--------|--|------| | Parameter | Symbol | Limits | Unit | | Dower ounnly Voltogo | VCCL※1 | 10.0 | V | | Power supply Voltage | VCCH※1 | 13.5 | V | | Input Voltage | Vin※1 | VCCL+0.3 to GND-0.3
Only SCL,SDA 7 to GND-0.3 | V | | Power Dissipation | Pd | 1.06 ※2 | W | | Storage Temperature | Tastg | -55 to +150 | °C | ^{**}Maximum voltage which can be impressed referencing GND. Operation using batteries which is used in automobiles directly cannot be guaranteed. Thermal resistance θ ja = 117.6(°C/W) ROHM Standard board Size:70×70×1.6(mm²) Material: A FR4 grass epoxy board (3% or less of copper foil area) # **Operating Range** | Parameter | Symbol | Limits | Unit | |----------------------|--------|--------------|------| | Dower oupply voltage | VCCL | 7.0 to 9.5 | V | | Power supply voltage | VCCH | VCCL to 13.0 | V | | Temperature | Topr | -40 to +85 | °C | ^{※2} This value decreases 8.5mW/°C for Ta=25°C or more. ROHM standard board shall be mounted # **Electrical Characteristic** Unless specified particularly Ta=25°C, VCCL=VCCH=8.5V, f=1kHz, Vin=1Vrms, Rg=600 Ω , RL=10k Ω , A input Input Gain, Volume, Tone control, Loudness, Fader=0dB, LPF, HPF=OFF, Mix OFF, anti-aliasing-filter OFF | X | | | | Limit | | | | | |----------------|---|-------------------|------|-------|------|-------|--|--| | BLOCK | Item | Symbol | Min. | Тур. | Max. | Unit | Condition | | | | Current upon no signal | ΙQ | - | 36 | 49 | mA | No signal | | | | Voltage gain | G_V | -1.5 | 0 | +1.5 | dB | Gv=20log(VOUT/VIN) | | | | Channel balance | СВ | -1.5 | 0 | +1.5 | dB | CB = GV1-GV2 | | | | Total harmonic distortion 1 * | THD+N1 | - | 0.004 | 0.05 | % | VOUT=1Vrms
BW=400-30KHz
VCCH=8.5V(Hi-Voltage OFF) | | | | Total harmonic distortion 2 * | THD+N2 | - | 0.002 | 0.05 | % | VIN=1Vrms
BW=400-30KHz
VCCH=12V(Hi-Voltage ON) | | | | Output noise voltage 1 * | V _{NO1} | - | 6 | 12 | μVrms | $Rg = 0\Omega$
BW = IHF-A
VCCH=8.5V(Hi-Voltage OFF) | | | JAL. | Front/Rear Output noise voltage 2 Front/Rear * | V_{NO2} | - | 16 | 32 | μVrms | $Rg = 0\Omega$
BW = IHF-A
VCCH=12V(Hi-Voltage ON) | | | GENERAL | Subwoofer Output noise voltage 3 Subwoofer * | V_{NO3} | - | 22 | 44 | μVrms | $Rg = 0\Omega$
BW = IHF-A
VCCH=12V(Hi-Voltage ON) | | | | Residual output noise voltage 1 * | V_{NOR1} | - | 4 | 10 | μVrms | Fader = -∞dB
Rg = 0Ω, BW = IHF-A
VCCH=8.5V(Hi-Voltage OFF) | | | | Front/Rear Residual output noise voltage 2 Front/Rear * | V _{NOR2} | - | 11 | 22 | μVrms | Fader = -∞dB
Rg = 0Ω, BW = IHF-A
VCCH=12V(Hi-Voltage ON) | | | | Subwoofer Residual output noise voltage 3 Subwoofer * | V_{NOR3} | - | 16 | 32 | μVrms | Fader = -∞dB
Rg = 0Ω,BW = IHF-A
VCCH=12V(Hi-Voltage ON) | | | | Cross-talk between channels * | СТС | - | -100 | -85 | dB | $Rg = 0\Omega$ $CTC=20log(VOUT/VIN)$ $BW = IHF-A$ | | | | Ripple rejection | RR | - | -65 | -40 | dB | f=1kHz, VRR=100mVrms
RR=20log(VCC IN/VOUT) | | | | Input impedance | R_{IN} | 70 | 100 | 130 | kΩ | | | | | Maximum input voltage | V_{IM} | 2.0 | 2.1 | - | Vrms | VIM at THD+N(VOUT)=1%
BW=400-30KHz | | | Selector | Cross-talk between selectors * | CTS | - | -100 | -85 | dB | $Rg = 0\Omega$
CTS=20log(VOUT/VIN)
BW = IHF-A | | | Input_Selector | Common mode rejection ratio * | CMRR | 46 | 60 | - | dB | XP1 and XN input XP2 and XN input CMRR=20log(VIN/VOUT) BW = IHF-A [※X・・・D/E]
 | | | Limite | | | | | | | |------------|-----------------------|---------------------|------|-------|------|------|--| | 농 | | | | Limit | | | | | BLOCK | Item | Symbol | Min. | Тур. | Max. | Unit | Condition | | ain | Maximum input gain | G _{v MAX} | +14 | +16 | +18 | dB | Input Gain +16dB
VIN=100mVrms
Gin=20log(VOUT/VIN) | | Input Gain | Minimum input gain | G _{v MIN} | -2 | 0 | +2 | dB | Input Gain 0dB
VIN=1Vrms
Gin=20log(VOUT/VIN) | | | Gain set error | G _{V ERR1} | -2 | 0 | +2 | dB | GAIN=+16to+1dB | | Ф | Maximum boost gain | G _{v MAX} | +13 | +15 | +17 | dB | Volume +15dB
VIN=100mVrms
Gin=20log(VOUT/VIN) | | Volume | Maximum attenuation * | G _{v MIN} | -83 | -79 | -75 | dB | Volume -79dB
VIN=2Vrms
Gin=20log(VOUT/VIN) | | | Gain set error | G _{V ERR1} | -2 | 0 | +2 | dB | GAIN=+15to+1dB | | | Attenuation set error | G _{V ERR2} | -2 | 0 | +2 | dB | ATT=0dBto-79dB | | Mute | Mute attenuation * | G _{MUTE} | - | -100 | -85 | dB | Mute ON
Gmute=20log(VOUT/VIN)
BW = IHF-A | | S | Maximum boost gain | G _{B BST} | +13 | +15 | +17 | dB | Gain=+15dB f=100Hz
VIN=100mVrms
G _B =20log (VOUT/VIN) | | Bass | Maximum cut gain | G _{B CUT} | -17 | -15 | -13 | dB | Gain=-15dB f=100Hz
VIN=2Vrms
G _B =20log (VOUT/VIN) | | | Gain set error | G _{B ERR} | -2 | 0 | +2 | dB | Gain=+15to-15dB f=100Hz | | alle | Maximum boost gain | G _{M BST} | +13 | +15 | +17 | dB | Gain=+15dB f=1kHz
VIN=100mVrms
G _M =20log (VOUT/VIN) | | Middle | Maximum cut gain | G _{м сит} | -17 | -15 | -13 | dB | Gain=-15dB f=1kHz
VIN=2Vrms
G _M =20log (VOUT/VIN) | | | Gain set error | G _{M ERR} | -2 | 0 | +2 | dB | Gain=+15to-15dB f=1kHz | | ē | Maximum boost gain | G _{T BST} | +13 | +15 | +17 | dB | Gain=+15dB f=10kHz
VIN=100mVrms
G⊤=20log (VOUT/VIN) | | Treble | Maximum cut gain | G т сит | -17 | -15 | -13 | dB | Gain=-15dB f=10kHz
VIN=2Vrms
G _T =20log (VOUT/VIN) | | | Gain set error | G _{T ERR} | -2 | 0 | +2 | dB | Gain=+15to-15dB f=10kHz | | LOUDN | Maximum gain | G _{L MAX} | -17 | -15 | -13 | dB | Gain -15dB f=800Hz
VIN=1Vrms
G _L =20log(VOUT/VIN) | | | Gain set error | GLERR | -2 | 0 | +2 | dB | Gain=-15 to-1dB | | - | | | | | | | | | X | | Limit | | | | | | |----------------|-------------------------|---------------------|------|------|------|------|---| | BLOCK | Item | Symbol | Min. | Тур. | Max. | Unit | Condition | | | Maximum boost gain | G _{F BST} | +13 | +15 | +17 | dB | Fader/Mix=+15dB
V _{IN} =100mVrms
G _F =20log(VOUT/VIN) | | Fader/Mix | Maximum attenuation * | G_FMIN | - | -100 | -85 | dB | Fader=-∞dB, Mix=OFF
G _F =20log(VOUT/VIN)
BW = IHF-A | | | Gain set error | G _{F ERR} | -2 | 0 | 2 | dB | Gain=+15 to +1dB | | | Attenuation set error 1 | G _{F ERR1} | -2 | 0 | 2 | dB | ATT=-1 to -15dB | | | Attenuation set error 2 | G _{F ERR2} | -3 | 0 | 3 | dB | ATT=-16 to -47dB | | | Attenuation set error 3 | G _{F ERR3} | -4 | 0 | 4 | dB | ATT=-48 to -79dB | | | Output impedance | R_{OUT} | - | - | 50 | Ω | VIN=100 mVrms | | OUTPUT | Maximum output voltage1 | V _{OM1} | 2.50 | 2.75 | - | Vrms | THD+N=1% BW=400-30KHz VCCH=8.5V, LVS=+3dB (Hi-Voltage OFF) | | 00 | Maximum output voltage2 | V _{OM2} | 3.75 | 4 | - | Vrms | THD+N=1%
BW=400-30KHz
VCCH=12V(Hi-Voltage ON) | | | Maximum output voltage | V_{LMAX} | 2.8 | 3.1 | 3.5 | V | | | Level
Meter | Maximum offset voltage | V _{LOFF} | - | 15 | 100 | mV | | ^{*}VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement. Phase between input / output is same. Typical Performance Curve(s) Figure 5. VCCH vs Iq (VCCL=OPEN) Figure 7. THD vs Vin / Vo Figure 8. CMRR Figure 9. PSRR Figure 10. Loudness Figure 11. Anti aliasing Filter Figure 12. Bass gain vs frequency Figure 13. Middle gain vs frequency Figure 14. Treble gain vs frequency Figure 15. LPF # I²C BUS CONTROL SIGNAL SPECIFICATION # (1) Electrical specifications and timing for bus lines and I/O stages Figure 16. Definition of timing on the I²C-bus Table 1 Characteristics of the SDA and SCL bus lines for I²C-bus devices(Ta=25°C, VCCL=8.5V) | | Deventer | Coursels of | Fast-mod | e I ² C-bus | l lmit | |---|--|-------------|----------|------------------------|--------| | | Parameter | Symbol | Min. | Max. | Unit | | 1 | SCL clock frequency | fSCL | 0 | 400 | kHz | | 2 | Bus free time between a STOP and START condition | tBUF | 1.3 | _ | μS | | 3 | Hold time (repeated) START condition. After this period, the | +UD.CTA | 0.6 | | μS | | 3 | first clock pulse is generated | tHD;STA | 0.6 | _ | · | | 4 | LOW period of the SCL clock | tLOW | 1.3 | _ | μS | | 5 | HIGH period of the SCL clock | tHIGH | 0.6 | _ | μS | | 6 | Set-up time for a repeated START condition | tSU;STA | 0.6 | _ | μS | | 7 | Data hold time | tHD;DAT | 0 | _ | μS | | 8 | Data set-up time | tSU;DAT | 100 | _ | ns | | 9 | Set-up time for STOP condition | tSU;STO | 0.6 | _ | μS | All values referred to VIH min. and VIL max. Levels (see Table 2). Table 2 Characteristics of the SDA and SCL I/O stages for I²C-bus devices | | Parameter | Symbol | Fast-mod | Unit | | |----|--|--------|----------|------|-------| | | Farameter | Symbol | Min. | Max. | Offic | | 10 | LOW level input voltage | VIL | -0.3 | 1 | V | | 11 | HIGH level input voltage | VIH | 2.3 | 5 | V | | 12 | Pulse width of spikes which must be suppressed by the input filter. | tSP | 0 | 50 | ns | | 13 | LOW level output voltage: at 3mA sink current | VOL1 | 0 | 0.4 | V | | 14 | Input current each I/O pin with an input voltage between 0.4V and 4.5V | li | -10 | 10 | μA | Figure 17. Command timing example in the I2C data transmission SCL clock frequency :250kHz # (2)I²C BUS FORMAT | | MSB | LSB | | MSB | LSB | | MSB | LSB | | | |------|---------------------------------------|--|-------|---------------------|----------|--------|--------------|-------------|------|------| | S | Slave A | Address | Α | Select Addres | SS | Α | | Data | Α | Р | | 1bit | 81 | oit | 1bit | 8bit | | 1bit | | 8bit | 1bit | 1bit | | | S | | = Sta | rt conditions (Re | cogniti | ion of | start bit) | | | | | | Slave | Slave Address = Recognition of slave address. 7 bits in upper order are voluntary. | | | | | | | | ary. | | | | | The | e least significant | bit is ' | "L" du | ue to writin | g. | | | | | Α | | = AC | KNOWLEDGE b | it (Rec | ognit | ion of ackr | nowledgemer | nt) | | | | Selec | t Address | = Se | lect every of volu | me, ba | ass a | nd treble. | | | | | | Data = Data on every volume and tone. | | | | | | | | | | | | Р | | = Sto | p condition (Rec | ognitic | n of | stop bit) | | | | # (3)I²C BUS Interface Protocol 1)Basic form | S | Slave Address | s A | Select Addre | ess | Α | Data | l | Α | Р | |---|---------------|-----|--------------|-----|---|------|-----|---|---| | | MSB L | SB | MSB | LSB | М | SB I | LSE | 3 | | 2) Automatic increment (Select Address increases (+1) according to the number of data) |
-/ | | | 17 100 000 11101 0000 | • (· · | <i>,</i> | | | | | | | | |--------|---------------|---|-----------------------|--------------------|----------|----|-------|-----|---|-------|---|----| | S | Slave Address | Α | Select Address | Α | Data1 | Α | Data2 | Α | | DataN | Α | Р | | | MSB LSE | 3 | MSB LS | 3 | MSB L | SB | MSB | LSE | 3 | MSB | L | SB | (Example) 1 Data 1 is set as data of Select Address (20h). - ②Data 2 is set as data of Select Address +1 (28h). - ③Data N is set as data of Select Address +N-1. 3)Configuration unavailable for transmission (In this case, only Select Address 1 is set.) | | S | Slave Add | lress / | A S | Select Addre | ess1 | Α | Da | ata | Α | Sele | ct Addı | ress 2 | Α | Da | ta | Α | Р | | |---|---|-----------|--|--|--------------|------|---|----|-----|---|------|---------|--------|---|-----|-----|---|---|--| | Ī | N | MSB | LSB | MS | В | LSB | M | SB | LSE | 3 | MSB | | LSB | N | ISB | LSE | 3 | | | | | | | (No | (Note)If any data is transmitted as Select Address 2 next to data, | It is recognized as data, not as Select Address 2. | | | | | | | | | | | | | | | | | # (4)Slave Address | MSB | | | | | | | LSB | | |-----|----|----|----|----|----|----|-----|-----| | A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80H | # (5)Select Address and Data | | Select | MSB Data LSB | | | | | | | | | | | | |--------------------------|------------------|------------------------------|--------------------------------|---------------------------|--|----------------------------------|----------------------|------------------|--------------------------|--|--|--|--| | Items | Address
(hex) | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | Initial Setup1 | 01 | Advanced
Switch
ON/OFF | Anti Alias
Filter
ON/OFF | Tim | ed Switch
e of
ader/Mix
oudness | Level Hi-voltage
Shift ON/OFF | | | d Switch
of Mute | | | | | | LPF Setup | 02 | LPF
Phase
0%180° | Level
Meter
Reset | | er Output
ector | Subwoofer
Input
Selector1 | Su | bwoofer LPF | - fc | | | | | | Initial Setup2 | 03 | N | lixing Input
Selector | | Loud | ness f0 | 0 | 0 | Level
Meter
ON/OFF | | | | | | Initial Setup3 | 04 | 1ch Mix
Input sel | 2ch Mix
Input sel | Rear
Input
Selector | Front
Input
Selector | | ofer Input
octor2 | HP | F fc | | | | | | Input Selector | 05 | Full-diff
Type | 0 | 0 | Input
Selector | | | | | | | | | | Input Gain | 06 | MUTE
ON/OFF | 0 | 0 | Input Gain | | | | | | | | | | Volume Gain | 20 | | | , | Volume Gain / Attenuation | | | | | | | | | | Fader 1ch Front | 28 | | Fader Gain / Attenuation | | | | | | | | | | | | Fader 2ch Front | 29 | | Fader Gain / Attenuation | | | | | | | | | | | | Fader 1ch Rear | 2A | | Fader Gain / Attenuation | | | | | | | | | | | | Fader 2ch Rear | 2B | | Fader Gain / Attenuation | | | | | | | | | | | | Fader 1ch Sub | 2C | | Fader Gain / Attenuation | | | | | | | | | | | | Fader 2ch Sub | 2D | | | | Fader Gai | n / Attenuation | on | | | | | | | | Mixing1 Gain | 30 | | | | Mixing Ga | in / Attenuati | on | | | | | | | | Mixing2 Gain | 31 | | | | Mixing Ga | in / Attenuati | on | | | | | | | | Bass setup | 41 | 0 | 0 | Bas | s f0 | 0 | 0 | Bas | s Q | | | | | | Middle setup | 44 | 0 | 0 | Mido | lle f0 | 0 | 0 | Mido | lle Q | | | | | | Treble setup | 47 | 0 | 0 | Treb | le f0 | 0 | 0 | 0 | Treble Q | | | | | | Bass Gain | 51 | Bass
Boost/Cut | 0 | 0 | | | Bass Gain | | | | | | | | Middle Gain | 54 | Middle
Boost/Cut | 0 | 0 | | | Middle Gair | 1 | | | | | | | Treble Gain | 57 | Treble
Boost/Cut | 0 | 0 | | | Treble Gair | 1 | | | | | | | Loudness Gain | 75 | 0 | HIC | UT | Loudness Gain | | | | | | | | | | Output Level
Detector | 90 | 0 | 0 | | | | | OUT R1
ON/OFF | OUT R2
ON/OFF | | | | | | Initial Setup4 | A0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Initial Setup5 | A1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Initial Setup6 | A2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | | | | | | Initial Setup7 | A3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | | | System Reset | FE | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | X (Set up bit (It is written with "0" by the above table) which hasn't been used in "0". ## Note - 1. In function changing of the hatching part, it works Advanced switch.. - 2. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below. - 3. For the function of input selector and subwoofer input select etc, it is not corresponded for advanced switch. Therefore, please apply mute on the side of a set when changes these setting. - 4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting advanced-mute time. | Select address 01(hex) | Default: | 8'ha4 | | | | | | | | |------------------------|----------|-------|----|----|---------|-------|----|----|-----| | Function Name | Mode | MSB | | | Initial | Setup | | | LSB | | Function Name | iviode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0.6msec | | | | | | | 0 | 0 | | Advanced Switch | 1.0msec | | | | | | | 0 | 1 | | Time of Mute | 1.4msec | | | | | | | 1 | 0 | | | 3.2msec | | | | | | | 1 | 1 | | Hi-voltage | OFF | | | | | | 0 | | | | ON/OFF | ON | | | | | | 1 | | | | Level Shift | 0dB | | | | | 0 | | | | | Level Still | +3dB | | | | | 1 | | | | | Advanced Switch | 4.7msec | | | 0 | 0 | | | | | | Time of | 7.2msec | | | 0 | 1 | | | | | | Volume /Fader | 11.2msec | | | 1 | 0 | | | | | | /Tone/Loudness | 14.4msec | | | 1 | 1 | | | | | | Anti Alias Filter | OFF | | 0 | | | | | | | | ON/OFF | ON | | 1 | | | | | | | | Advanced Switch | OFF | 0 | | | | | | | | | ON/OFF | ON | 1 | | | | | | | | | Select address 02(hex) | Default:8 | 3'h00 | | | | | | | | |------------------------|----------------|-------|----|----|-------|-------|----|----|-----| | Function Name | Mode | MSB | | | LPF (| Setup | | | LSB | | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 55Hz | | | | | | 0 | 0 | 0 | | | 85Hz | | | | | | 0 | 0 | 1 | | | 120Hz | | | | | | 0 | 1 | 0 | | Subwoofer | 160Hz | | | | | | 0 | 1 | 1 | | LPF fc | PASS | | | | | | 1 | 0 | 0 | | | | | | | | | 1 | 0 | 1 | | | Prohibition | | | | | | 1 | 1 | 0 | | | | | | | | | 1 | 1 | 1 | | Subwoofer | Loudness | | | | | 0 | | | | | Input Selector1 | Input Selector | | | | | 1 | | | | | | Subwoofer | | | 0 | 0 | | | | | | | 1ch(S1/S1) | | | | | | | | | | Subwoofer | Front(F1/F2) | | | 0 | 1 | | | | | | Output Selector | Rear(R1/R2) | | | 1 | 0 | | | | | | | Subwoofer(S1/ | | | 1 | 1 | | | | | | | S2) | | | ı | ' | | | | | | Level Meter | Hold | | 0 | | | | | | | | Reset (*1) | Reset | | 1 | | | | | | | | LPF Phase | 0° | 0 | | | | | | | | | 09180°(*2) | 180° | 1 | | | | | | | | : Initial condition ^{(*1):} If "Level Meter Reset" is set as Reset("b1), a reset pulse will be outputted only once to a level meter block. Also about this register, after a reset pulse output returns to a Hold("b0) state, without holding a Reset("b1) state. Therefore, in order to change into a Hold state, it is not necessary to carry out a register setup again. (*2): If Subwoofer LPF fc is set as 「PASS」 ('b000), LPF PHASE is compulsorily fixed to 0('b0). | Select address 03(| (hex) | Def | ault:8'h01 | | | | | | | | | | |--------------------|------------------------|-------------|------------------|-------------|-----|----|----|-----------|-------|----|----|-----| | Function | Mode | | Pin | | MSB | | | Initial S | etup2 | | | LSB | | Name | Mode | 1p | 1n 2n | 2p | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | Level Meter | | | | | | | | | | | | 0 | | ON/OFF(*1) | F(*1) Level Meter Mode | | | | | | | | | | 1 | | | | 400Hz | | | | | | | 0 | 0 | | | | | Loudness | 800Hz | | | | | | 0 | 1 | | | | | | f0 | 2400Hz | | | | | | 1 | 0 | | | | | | | Prohibition | | | | | | | 1 | 1 | | | | | | Mix MIN | | - | MIN_E
N2 | 0 | 0 | 0 | | | | | | | | | Prohibition | | | 0 | 0 | 1 | | | | | | | Mixing Input | A_Single | A1 | - | A2 | 0 | 1 | 0 | | | | | | | Selector | D_Diff | DP1 | DN | DP2 | 0 | 1 | 1 | | | | | | | (*2) | B_Single | B1 | - | B2 | 1 | 0 | 0 | | | | | | | (2) | E_Diff | EP1 | EN1 | EP2 | 1 | 0 | 1 | | | | | | | | E_Full-diff | EP1 | EN MIN_
1 EN2 | EP2 | 1 | 1 | 0 | | | | | | | | Prohibition | | | 1 | 1 | 1 | | | | | | | (*1): When you use "Output level detector", please set this register of D0 as 0. Since "Level Meter" and "Output Level Detector" are sharing the terminal, concurrent use is impossible. Default setup is "Level Meter" | D0 | | 16pin | 17pin | | | |----|------|---|-------|--|--| | 0 | OLDC | Filter output terminal of output level detector | OLD | Output terminal of output level detector | | | 1 | LRST | Level meter reset terminal | LOUT | Output terminal for Level meter | | (*2): When you set Mixing Input Selector as "Mix"('b000), please do not set input Selector(Select Address 05, D0 to D4) as "E_Full_Diff"('b 01000). When you set Mixing Input Selector as "E_Diff"('b101), please do not set input Selector(Select Address 05, D0 to D4) as "E_Full_Diff"('b 01000). When you set Mixing Input Selector as "E_Full_Diff"('b110), please do not set input Selector(Select Address 05, D0 to D4) as "E_Diff"('b 00111). | Select address 04(hex |) Default: | 8'h80 | | | | | | | | |-----------------------|-----------------|-------|----|----|----------|----|----|----|-----| | Curation Name | Mada | MSB | | | HPF Setu | Jp | | | LSB | | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 55Hz | | | | | | | 0 | 0 | | HPF fc | 85Hz | | | | | | | 0 | 1 | | ПРГІС | 120Hz | | | | | | | 1 | 0 | | | 160Hz | | | | | | | 1 | 1 | | | Subwoofer Input | | | | | 0 | 0 | | | | Subwoofer | Selector1 | | | | | U | U | | | | Input Selector2 | LPF ON | | | | | 0 | 1 | | | | Input Selectorz | HPF ON | | | | | 1 | 0 | | | | | Prohibition | | | | | 1 | 1 | | | | Front Input | Loudness | | | | 0 | | | | | | Selector | HPF ON | | | | 1 | | | | | | Rear Input | Loudness | | | 0 | | | | | | | Selector | HPF ON | | | 1 | | | | | | | 1ch Mixing | 1ch | | 0 | | | | | | | | Input Selector | 2ch | | 1 | | | | | | | | 2ch Mixing | 1ch | 0 | | | | | | | | | Input Selector | 2ch | 1 | | | | | | | | | . Initial | aanditian | |-----------|-----------| | ı . muda | condition | Default:8'h00 Select address 05(hex) Initial Setup2 Pin LSB **Function MSB** Mode Name D7 D5 D2 D1 1p 1n 2p D6 D4 D3 D0 A_Single A1 A2 0 0 0 0 0 B_Single В1 B2 0 0 0 0 1 C_Single C1 C2 0 0 0 1 0 D_Single DP1 DP2 0 0 0 1 1 E1_Single EP1 Input EN1 0 0 1 0 1 Selector E2_Single EN2 EP2 0 1 0 1 1 (*1) D_Diff DP1 DP2 0 0 1 1 0 E_Diff EP1 DN EP2 0 0 1 1 E_Full_Diff EP1 EP2 EN1 0 0 0 0 Other setting Proibition 0 0 Input short 1 1 0 Full-diff Negative input 0 Type Bias 1 (*1): There is combination which shares an input terminal depending on the combination of "Input Selector" (Select Address 05, D0 to D4) and "Mixing Input Selector" (Select Address 03, D5 to D7). Be careful not to set up the following combination. | | Input | Selector | | | Mixing Input Selector | | | | | | | |-------------|-------|----------|---------|-----|-----------------------|---------|-----|---------|---------|--|--| | Mada | Pin | | | | Mode | Pin | | | | | | | Mode | 1p | 1n | 2n | 2p | Mode | 1p | 1n | 2n | 2p | | | | E_Full_Diff | EP1 | EN1 | MIN_EN2 | EP2 | Mix | MIN_EN2 | - | - | MIN_EN2 | | | | E_Full_Diff | EP1 | EN1 | MIN_EN2 | EP2 | E_Diff | EP1 | E | N1 | EP2 | | | | E_Diff | EP1 | EN1 | | EP2 | E_Full_Diff | EP1 | EN1 | MIN_EN2 | EP2 | | | | Select address 0 | 06 (hex) | Default:8'ha | aO | | | | | | | |------------------|-------------|--------------|----|----|---------|----------|--------------|----|-----| | Function Name | Coin | MSB | | | Input S | Selector | | | LSB | | runction mame | Gain | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0dB | | | | 0 | 0 | 0 | 0 | 0 | | | 1dB | | | | 0 | 0 | 0 | 0 | 1 | | | 2dB | | | | 0 | 0 | 0 | 1 | 0 | | | 3dB | | | | 0 | 0 | 0 | 1 | 1 | | | 4dB | | | | 0 | 0 | 1 | 0 | 0 | | | 5dB | | | | 0 | 0 | 1 | 0 | 1 | | | 6dB | | | | 0 | 0 | 1 | 1 | 0 | | | 7dB | | | | 0 | 0 | 1 | 1 | 1 | | | 8dB | | | | 0 | 1 | 0 | 0 | 0 | | | 9dB | | | | 0 | 1 | 0 | 0 | 1 | | Input Gain | 10dB | | | | 0 | 1 | 0 | 1 | 0 | | iriput Gairi | 11dB | | | | 0 | 1 | 0 | 1 | 1 | | | 12dB | | | | 0 | 1 | 1 | 0 | 0 | | | 13dB | |
| | 0 | 1 | 1 | 0 | 1 | | | 14dB | | | | 0 | 1 | 1 | 1 | 0 | | | 15dB | | | | 0 | 1 | 1 | 1 | 1 | | | 16dB | | | | 1 | 0 | 0 | 0 | 0 | | | (16dB) | | | | 1 | 0 | 0 | 0 | 1 | | | (16dB) | | | | 1 | 0 | 0 | 1 | 0 | | | (16dB) | | | | 1 | 0 | 0 | 1 | 1 | | | (16dB) | | | | 1 | 0 | 1 | 0 | 0 | | | Prohibition | | | | | 0 | ther setting | 1 | | | Mute | OFF | 0 | | | | | | | | | ON/OFF | ON | 1 | | | | | | | | : Initial condition | Select address 20 (| (hex) | Default:8'h00 | |----------------------|-------|---------------| | Coloot addition 20 (| 110A | Doladii.01100 | | Function Name | Mode | MSB | | | | ne Gain | | | LSB | |---------------|-------------|-----|----|----|----|---------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Prohibition | : | : | ÷ | : | ÷ | : | : | : | | | | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | +15dB | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | | | +14dB | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | | +13dB | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | | +12dB | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | | | +11dB | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | | | +10dB | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | | | +9dB | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | | | +8dB | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | +7dB | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | | | +6dB | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | | | +5dB | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | | +4dB | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | +3dB | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | +2dB | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | +1dB | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Volume | -0dB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gain | -1dB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | - | -2dB | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | -3dB | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | | -4dB | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | -5dB | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | | -6dB | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | | -7dB | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | -8dB | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | -9dB | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | | | -10dB | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | | -11dB | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | | | -12dB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | | -13dB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | | | -14dB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | -15dB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | | -16dB | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | -17dB | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | | -18dB | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | -19dB | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | | -20dB | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | : Initial condition | F 4: N | NAI - | MSB | | | Volum | ie Gain | | | LSB | |---------------|-------|-----|----|----|-------|---------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | -21dB | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | | | -22dB | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | -23dB | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | | -24dB | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | -25dB | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | | -26dB | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | | -27dB | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | | -28dB | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | | -29dB | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | | | -30dB | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | | -31dB | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | -32dB | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | -33dB | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | | -34dB | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | | -35dB | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | | -36dB | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | | -37dB | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | | -38dB | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | | | -39dB | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | | | -40dB | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | | -41dB | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | | | -42dB | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | -43dB | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | | | -44dB | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | | Volume | -45dB | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | | Gain | -46dB | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | | | -47dB | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | | -48dB | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | | -49dB | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | | | -50dB | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | -51dB | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | | -52dB | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | | | -53dB | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | | | -54dB | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | | -55dB | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | | -56dB | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | | -57dB | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | | | -58dB | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | | | -59dB | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | | | -60dB | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | | -61dB | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | | | -62dB | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | -63dB | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | -64dB | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | -65dB | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | | -66dB | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | | -67dB | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | | -68dB | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | -69dB | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | | | -70dB | ' | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | Function Name | Mode | MSB | | | Volum | ne Gain | | | LSB | |----------------|-------------|-----|----|----|-------|---------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | -71dB | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | | -72dB | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | | -73dB | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | | | -74dB | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | | | -75dB | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | | \ | -76dB | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | Volume
Gain | -77dB | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | | Gain | -78dB | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | | | -79dB | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | | | | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | | Prohibition | : | : | ÷ | : | ÷ | ÷ | ÷ | : | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | '-79dB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Select address 28, 29, 2A, 2B, 2C, 2D, 30, 31(hex) Default:8'hFF | Function Name | Mode | MSB | | | Fader / M | lixing Gain | | | LSB | |---------------|-------------|-----|----|----|-----------|-------------|----|----|-----| | runction Name | wode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Prohibition | : | : | ÷ | : | ÷ | : | : | : | | | | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | | | +15dB | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | | | +14dB | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | | +13dB | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | | +12dB | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | | | +11dB | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | | Fader/Mixing | +10dB | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | | Gain | +9dB | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | | | +8dB | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | +7dB | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | | | +6dB | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | | | +5dB | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | | +4dB | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | | +3dB | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | | +2dB | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | +1dB | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Function Name | Mode | MSB | | | Fade | r Gain | | | LSB | |---------------|-------|-----|----|----|------|--------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | -0dB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | -1dB | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | -2dB | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | -3dB | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | | -4dB | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | -5dB | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | | -6dB | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | | -7dB | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | -8dB | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | -9dB | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | | | -10dB | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | | -11dB | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | | | -12dB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | | -13dB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | | | -14dB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | -15dB | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | | -16dB | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | -17dB | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | | -18dB | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | -19dB | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | Fader/Mixing | -20dB | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | | Gain | -21dB | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | | | -22dB | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | | | -23dB | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | | -24dB | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | -25dB | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | | -26dB | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | | -27dB | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | | -28dB | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | | | -29dB | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | | | -30dB | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | | -31dB | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | -32dB | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | -33dB | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | | -34dB | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | | -35dB | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | | -36dB | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | | -37dB | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | | -38dB | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | | | -39dB | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | | | -40dB | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | Constian Name | Mada | MSB | | | Fade | r Gain | | | LSB | |---------------|-------------|-----|----|----|------|--------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | -41dB | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | | | -42dB | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | | -43dB | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | | | -44dB | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | | | -45dB | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | | | -46dB | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | | | -47dB | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | | -48dB | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | | -49dB | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | | | -50dB | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | | -51dB | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | | -52dB | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | | | -53dB | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | | | -54dB | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | | -55dB | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | | -56dB | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | | -57dB | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | | | -58dB | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | | | -59dB | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | | | -60dB | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | | | -61dB | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | | Fader/Mixing | -62dB | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0
| | Gain | -63dB | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | -64dB | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | -65dB | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | | -66dB | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | | -67dB | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | | -68dB | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | -69dB | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | | | -70dB | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | | | -71dB | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | | -72dB | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | | -73dB | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | | | -74dB | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | | | -75dB | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | | | -76dB | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | | | -77dB | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | | | -78dB | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | | | -79dB | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | | | | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | | Prohibition | : | : | : | : | : | : | : | : | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | MUTE | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | : Initial condition Select address 41(hex) Default:8'h00 | Function Name | Mode | MSB | | | Bass | setup | | | LSB | |---------------|-------|-----|----|----|------|-------|----|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0.5 | | | | | | | 0 | 0 | | Bass Q | 1.0 | | | | | | | 0 | 1 | | Dass Q | 1.5 | | | | | | | 1 | 0 | | | 2.0 | | | | | | | 1 | 1 | | | 60Hz | | | 0 | 0 | | | | | | Bass f0 | 80Hz | | | 0 | 1 | | | | | | Da55 10 | 100Hz | | | 1 | 0 | | | | | | | 120Hz | | | 1 | 1 | | | | | Select address 44(hex) Default:8'h00 | Coloot addition 1 | 1(110%) | Doladit.0110 | O | | | | | | | |-------------------|---------|-----------------------|----|----|----|----------|----|----|-----| | Function Name | Mada | Mode MSB Middle setup | | | | le setup | | | LSB | | Function Name | iviode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0.75 | | | | | | | 0 | 0 | | Middle Q | 1.00 | | | | | | | 0 | 1 | | | 1.25 | | | | | | | 1 | 0 | | | 1.50 | | | | | | | 1 | 1 | | | 0.5kHz | | | 0 | 0 | | | | | | Middle f0 | 1kHz | | | 0 | 1 | | | | | | Middle f0 | 1.5kHz | | | 1 | 0 | | | | | | | 2.5kHz | | | 1 | 1 | | | | | Select address 47(hex) Default:8'h00 | Ocicot addices 4 | / (IICA) | DCIGGIL.0 110 | O | | | | | | | |------------------|----------|------------------|----|----|----|----|----|----|-----| | Function Name | Mode | MSB Treble setup | | | | | | | LSB | | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | Troble O | 0.75 | | | | | | | | 0 | | Treble Q | 1.25 | | | | | | | | 1 | | | 7.5kHz | | | 0 | 0 | | | | | | Treble f0 | 10kHz | | | 0 | 1 | | | | | | Treble to | 12.5kHz | | | 1 | 0 | | | | | | | 15kHz | | | 1 | 1 | | | | | Select address 51, 54, 57(hex) Default:8'h80 | | Mada | MSB | | Е | Bass/Middle | /Treble Gai | n | | LSB | |--------------------|-------------|-----|----|----|-------------|-------------|--------------|----|-----| | Function Name | Mode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0dB | | | | 0 | 0 | 0 | 0 | 0 | | | 1dB | | | | 0 | 0 | 0 | 0 | 1 | | | 2dB | | | | 0 | 0 | 0 | 1 | 0 | | | 3dB | | | | 0 | 0 | 0 | 1 | 1 | | | 4dB | | | | 0 | 0 | 1 | 0 | 0 | | | 5dB | | | | 0 | 0 | 1 | 0 | 1 | | | 6dB | | | | 0 | 0 | 1 | 1 | 0 | | | 7dB | | | | 0 | 0 | 1 | 1 | 1 | | | 8dB | | | | 0 | 1 | 0 | 0 | 0 | | Bass | 9dB | | | | 0 | 1 | 0 | 0 | 1 | | /Middle | 10dB | | | | 0 | 1 | 0 | 1 | 0 | | /Treble | 11dB | | | | 0 | 1 | 0 | 1 | 1 | | Gain | 12dB | | | | 0 | 1 | 1 | 0 | 0 | | | 13dB | | | | 0 | 1 | 1 | 0 | 1 | | | 14dB | | | | 0 | 1 | 1 | 1 | 0 | | | 15dB | | | | 0 | 1 | 1 | 1 | 1 | | | (15dB) | | | | 1 | 0 | 0 | 0 | 0 | | | (15dB) | | | | 1 | 0 | 0 | 0 | 1 | | | (15dB) | | | | 1 | 0 | 0 | 1 | 0 | | | (15dB) | | | | 1 | 0 | 0 | 1 | 1 | | | (15dB) | | | | 1 | 0 | 1 | 0 | 0 | | | Prohibition | | | | | (| ther setting |) | | | Bass/Middle/Treble | Boost | 0 | | | | | | | | | Boost/Cut | Cut | 1 | | | | | | | | Select address 75(hex) Default:8'h00 MSB Loudness Gain LSB **Function Name** Mode D7 D6 D5 D4 D3 D2 D1 D0 0dB 1dB 2dB 3dB 4dB 5dB 6dB 7dB 8dB 9dB 10dB Loudness Gain 11dB 12dB 13dB 14dB 15dB (15dB) (15dB) (15dB) (15dB) (15dB) Prohibition other setting HICUT1 HICUT2 Loudness HICUT HICUT3 HICUT4 | 1 | | | |---------|----------|------| | · Initi | al condi | tion | | | ai conu | uoi | | Select address 90(h | ex) | Default:8'h | 00 | | | | | | | |---------------------|--------|-------------|----|----|------------|-------------|----|----|-----| | Function Name | Mode | MSB | | | Output Lev | el Detector | • | | LSB | | Function Name | iviode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | OUT R2 | OFF | | | | | | | | 0 | | ON/OFF | ON | | | | | | | | 1 | | OUT R1 | OFF | | | | | | | 0 | | | ON/OFF | ON | | | | | | | 1 | | | OUT F2 | OFF | | | | | | 0 | | | | ON/OFF | ON | | | | | | 1 | | | | OUT F1 | OFF | | | | | 0 | | | | | ON/OFF | ON | | | | | 1 | | | | | | ±30mV | | | 0 | 0 | | | | | | Threshold | ±45mV | | | 0 | 1 | | | | | | Level Select | ±60mV | | | 1 | 0 | | | | | | | ±75mV | | | 1 | 1 | | | | | | : Initial condition | |----------------------| | . Iriiliai condition | ## Recommendation of VOLUME DIAGRAM The example of the SET VOLUME DIAGRAM by Volume(SelectAddress 20(hex)) and Fader(SelectAddress 28,29,2A,2B,2C, 2D(hex)) is explained in the following. Example 1) It is recommended when a signal level is made to attenuate, a decline by Volume is done by -24dB. It is adjusted with Fader after -24dB. S/N ratio can improve in comparison with the case that it is made to attenuate only with Volume. | · | | | | |---------|--|----------------------------------|-------| | Display | Total Gain | Volume | Fader | | (※) | [dB] | [dB] | [dB] | | 50 | 6 | 6
5 | 0 | | 49 | 6
5 | 5 | 0 | | 48 | 4 | 4 | 0 | | 47 | 3
2
1 | 3
2
1 | 0 | | 46 | 2 | 2 | 0 | | 45 | 1 | | 0 | | 44 | 0 | 0 | 0 | | 43 | -1 | -1 | 0 | | 42 | -2 | -2 | 0 | | 41 | -3 | -3 | 0 | | 40 | -4 | -4 | 0 | | 39 | -1
-2
-3
-4
-5
-6
-7 | -2
-3
-4
-5
-6
-7 | 0 | | 38 | -6 | -6 | 0 | | 37 | -7 | -7 | 0 | | 36 | -8 | -8 | 0 | | 35 | -9 | -9 | 0 | | 34 | -10 | -10 | 0 | | 33 | -11 | -11 | 0 | | 32 | -12 | -12 | 0 | | 31 | -13 | -13 | 0 | | 30 | -14 | -14 | 0 | | 29 | -15 | -15 | 0 | | 28 | -16 | -16 | 0 | | 27 | -17 | -17 | 0 | | 26 | -18 | -18 | 0 | | Display | Total Gain | Volume | Fader | |-------------|------------|---------------------------------|--------------------------| | (※) | [dB] | [dB] | [dB] | | 25
24 | -19 | -19 | 0 | | 24 | -19
-20 | -19
-20 | 0 | | 23 | -21 | -21
-22
-23 | 0 | | 22 | -22
-23 | -22 | 0 | | 21 | -23 | -23 | 0 | | 20 | -24 | -24 | 0 | | 19 | -26 | -24 | -2 | | 18 | -28 | -24 | -4 | | 17 | -30 | -24
-24 | -6 | | 16 | -32 | -24 | -8 | | 15 | -34 | -24 | -10 | | 14 | -36 | -24
-24 | -12 | | 13 | -38 | -24 | -14 | | 12 | -40 | -24 | -16 | | 12
11 | -42 | -24
-24
-24
-24
-24 | -18 | | 10 | -44 | -24 | -20 | | 9 | -46 | -24 | -22 | | 8
7 | -48 | -24
-24
-24 | -20
-22
-24
-26 | | | -50 | -24 | -26 | | 6
5
4 | -52 | -24 | -28 | | 5 | -54 | -24 | -30 | | | -56 | -24
-24 | -32 | | 3 | -58 | -24 | -34 | | 3
2
1 | -60 | -24
-24 | -36 | | 1 | -62 | -24 | -38 | | 0 | -∞ | Mute | Mute | Table 1. A decline by Volume is done by -24dB. It is adjusted with Fader after -24dB. (*XDisplay=SET VOLUME) #When a attenuate after -32dB is used with Volume, in case of use Subwoofer Input Selector = Input Selector (Select Address 02(hex), D3 = 1), Output level of OUTS1/S2 is attenuated \lceil Volume - (-31dB) \rfloor . Figure 18. Subwoofer Input Selector = Input Selector (SelectAddress 02(hex), D3 = 1) | Volume
[dB] | OUTS1/S2 [dB] | | | | |------------------------------|---|---|--|--| | Select
Address
20(hex) | Subwoofer Input
Selector=Loudness
(Select Address
02(hex), D3=0) | Subwoofer Input
Selector=
Input Selector
(Select Address
02(hex), D3=1) | | | | 6 | 6 | 0 | | | | 5 | 5 | 0 | | | | 4 | 4 | 0 | | | | 3 2 | 3 | 0 | | | | 2 | 2 | 0 | | | | 1 | 1 | 0 | | | | 0 | 0 | 0 | | | | -1 | -1 | 0 | | | | -2 | -2 | 0 | | | | -3 | -3 | 0 | | | | -4 | -4 | 0 | | | | -5 | -5 | 0 | | | | -6 | -6 | 0 | | | | -7 | -7 | 0 | | | | -8 | -8 | 0 | | | | -9 | -9 | 0 | | | | -10 | -10 | 0 | | | | -11 | -11 | 0 | | | | -12 | -12 | 0 | | | | -13 | -13 | 0 | | | | -14 | -14 | 0 | | | | -15 | -15 | 0 | | | | -16 | -16 | 0 | | | | -17 | -17 | 0 | | | | -18 | -18 | 0 | | | | Volume [dB] OUTS1/S2 [dB] Select Address 20(hex) Subwoofer Input Selector= Input Selector (Select Address 02(hex), D3=0) -19 -19 -20 -20 -21 -21 -22 -22 -23 -23 -24 -24 -26 -26 -28 -28 -30 -30 -32 -32 -34 -34 -36 -36 -38 -38 -40 -40 -42 -42 -44 -44 -44 -44 -46 -46 -48 -48 -17 -50 -50 -50 -54 -54 -55 -55 -58 -56 -56 -25 -58 -58 -60 -60 -62 -31 | | | | | | | |--|---------
--------------------------------------|--|--|--|--| | Select
Address
20(hex) Subwooler Input
Selector=Loudness
(Select Address
02(hex), D3=0) Selector=
Input Selector
(Select Address
02(hex), D3=1) -19 -19 0 -20 -20 0 -21 -21 0 -22 -22 0 -23 -23 0 -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -56 <td></td> <td colspan="5"></td> | | | | | | | | -20 -20 0 -21 -21 0 -22 -22 0 -23 -23 0 -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | Address | Selector=Loudness
(Select Address | Selector=
Input Selector
(Select Address | | | | | -21 -21 0 -22 -22 0 -23 -23 0 -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -19 | -19 | 0 | | | | | -22 -22 0 -23 -23 0 -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -20 | -20 | 0 | | | | | -23 -23 0 -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -36 -5 -38 -3 -7 -40 -40 -9 -42 -11 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -21 | -21 | 0 | | | | | -24 -24 0 -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -11 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -22 | -22 | 0 | | | | | -26 -26 0 -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -23 | -23 | 0 | | | | | -28 -28 0 -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -41 -44 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -24 | -24 | 0 | | | | | -30 -30 0 -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -42 -11 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -26 | -26 | 0 | | | | | -32 -32 -1 -34 -34 -3 -36 -36 -5 -38 -38 -7 -40 -40 -9 -42 -42 -11 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -28 | -28 | 0 | | | | | -34 -34 -36 -36 -38 -38 -40 -40 -42 -42 -44 -44 -46 -46 -48 -48 -50 -50 -52 -52 -54 -54 -56 -56 -58 -58 -60 -60 | -30 | -30 | 0 | | | | | -36 -36 -38 -38 -40 -40 -42 -42 -44 -44 -46 -46 -48 -48 -50 -50 -52 -52 -54 -54 -56 -56 -58 -58 -60 -60 | -32 | -32 | -1 | | | | | -38 -38 -7 -40 -40 -9 -42 -42 -11 -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -34 | -34 | | | | | | -40 -40 -42 -42 -44 -44 -46 -46 -48 -48 -50 -50 -52 -52 -54 -54 -56 -56 -58 -58 -60 -29 | -36 | -36 | -5 | | | | | -42 -42 -44 -44 -46 -46 -48 -48 -50 -50 -52 -52 -54 -54 -56 -56 -58 -58 -60 -29 | -38 | -38 | -7 | | | | | -44 -44 -13 -46 -46 -15 -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -40 | -40 | -9 | | | | | -46 -46 -48 -48 -50 -50 -52 -52 -54 -54 -56 -56 -58 -58 -60 -60 | -42 | -42 | | | | | | -48 -48 -17 -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -44 | -44 | -13 | | | | | -50 -50 -19 -52 -52 -21 -54 -54 -23 -56 -56 -25 -58 -58 -27 -60 -60 -29 | -46 | -46 | -15 | | | | | -52 -52 -54 -54 -56 -56 -58 -58 -60 -60 | -48 | -48 | | | | | | -54 -54 -56 -56 -58 -58 -60 -60 | -50 | -50 | -19 | | | | | -56 -56 -58 -58 -60 -60 | -52 | -52 | -21 | | | | | -58 -58 -60 -60 -27 -29 | | | | | | | | -60 -60 -29 | -56 | -56 | | | | | | | -58 | -58 | -27 | | | | | -62 -62 -31 | | | | | | | | | -62 | -62 | -31 | | | | Table 2. Subwoofer Input Selector = Input Selector (Select Address 02(hex), D3 = 1) Volume attenuation vs Output Level of OUTS1/S2 ## About loudness When Loudness is set up in on, signal level in fo (set up by (Select Address 03(hex), D3,D4))is attenuated) is made attenuated. Therefore to make it put emphasis on the low and high band, use volume together Figure 19. Loudness gain vs frequency (fo=800Hz) | Display
(※) | Total
Gain
A [dB] | Total
Gain
B [dB] | Volume
[dB] | Loudness
[dB] | Fader
[dB] | |----------------|-------------------------|-------------------------|----------------|------------------|---------------| | 50 | 6 | 6 | 6 | 0 | 0 | | 49 | 5 | 5 | 5 | 0 | 0 | | 48 | 4 | 4 | 4 | 0 | 0 | | 47 | 3 | 3 | 3 | 0 | 0 | | 46 | 2 | 2 | 3
2
1 | 0 | 0 | | 45 | 1 | 1 | | 0 | 0 | | 44 | 0 | 0 | 0 | 0 | 0 | | 43 | -1 | -1 | -1 | 0 | 0 | | 42 | -2 | -2 | -2 | 0 | 0 | | 41 | -3 | -3 | -3 | 0 | 0 | | 40 | -4
-5 | -4 | -4 | 0 | 0 | | 39 | -5 | -5 | -5 | 0 | 0 | | 38 | -6 | -6 | -6 | 0 | 0 | | 37 | -7 | -7 | -7 | 0 | 0 | | 36 | -8 | -8 | -8 | 0 | 0 | | 35 | -9 | -9 | -9 | 0 | 0 | | 34 | -10 | -10 | -10 | 0 | 0 | | 33 | -10 | -10 | -10 | -1 | 0 | | 32 | -10 | -10 | -10 | -2 | 0 | | 31 | -10 | -10 | -10 | -3 | 0 | | 30 | -10 | -10 | -10 | -4 | 0 | | 29 | -10 | -10 | -10 | -5 | 0 | | 28 | -10 | -10 | -10 | -6 | 0 | | 27 | -10 | -10 | -10 | -7 | 0 | | 26 | -10 | -10 | -10 | -8 | 0 | | Display
(※) | Total
Gain
A [dB] | Total
Gain
B [dB] | Volume
[dB] | Loudness
[dB] | Fader
[dB] | |----------------|-------------------------|-------------------------|----------------|------------------|---------------| | 25 | -10 | -19 | -10 | -9 | 0 | | 24 | -10 | -20 | -10 | -10 | 0 | | 23 | -10 | -21 | -10 | -11 | 0 | | 22 | -10 | -22 | -10 | -12 | 0 | | 21 | -10-10 | -23 | -10 | -13 | 0 | | 20 | -10 | -24 | -10 | -14 | 0 | | 19 | -12 | -26 | -10 | -14 | -2 | | 18 | -14 | -28 | -10 | -14 | -4 | | 17 | -16 | -30 | -10 | -14 | -6 | | 16 | -18 | -32 | -10 | -14 | -8 | | 15 | -20 | -34 | -10 | -14 | -10 | | 14 | -22 | -36 | -10 | -14 | -12 | | 13 | -24 | -38 | -10 | -14 | -14 | | 12 | -26 | -40 | -10 | -14 | -16 | | 11 | -28 | -42 | -10 | -14 | -18 | | 10 | -30 | -44 | -10 | -14 | -20 | | 9 | -32 | -46 | -10 | -14 | -22 | | 8 | -34 | -48 | -10 | -14 | -24 | | 7 | -36 | -50 | -10 | -14 | -26 | | 6 | -38 | -52 | -10 | -14 | -28 | | 5 | -40 | -54 | -10 | -14 | -30 | | 4 | -42 | -56 | -10 | -14 | -32 | | 3
2
1 | -44 | -58 | -10 | -14 | -34 | | 2 | -46 | -60 | -10 | -14 | -36 | | 1 | -48 | -62 | -10 | -14 | -38 | | 0 | -∞ | -∞ | Mute | -14 | Mute | Table 3. A decline by Volume is done by -24dB. It is adjusted with Fader after -24dB. Loudness=ON (%Display=SET VOLUME) Figure 20. Gain vs frequency of Table.3 #### Attention about Loudness ON/OFF To make it put emphasis on the low and high band, when it is made to boost with Volume so long as it was made to attenuate with Loudness. Loudness OFF →ON : Send data of loudness before volume Loudness ON →OFF : Send data of volume before loudness **Transmit data in the above turn. A signal level declines first, and it is amplified after that. And so natural switching can be realized. Figure 21. example of data sending about Loudness ON/OFF # (6)About power on reset At on of supply voltage circuit made initialization inside IC is built-in. Please send data to all address as initial data at supply voltage on. And please supply mute at set side until this initial data is sent.) | ltom | Cumbal | Symbol | | Unit | Condition | | |--|--------|--------|------|------|-----------|-------------------------------| | Item | Symbol | Min. | Тур. | Max. | Onit | Condition | | Rise time of VCCL | Trise | 33 | _ | _ | usec | VCCL rise time from 0V to 5V) | | VCCL voltage of release power on reset | Vpor | _ | 4.1 | _ | V | | # (7)About external compulsory mute terminal Mute is possible forcibly than the outside after input again department, by the setting of the MUTE terminal. | Mute Voltage Condition | Mode | |------------------------|----------| | GND to 1.0V | MUTE ON | | 2.3V to 5.0V | MUTE OFF | Establish the voltage of MUTE in the condition to have been defined.) # About OUT-terminal(18to23pin) vs. VCCL Output voltage of OUT terminal(18to23pin) keep fixed voltage in operational range(VCCL=7.0Vto9.5V). Figure 22. OUT(18 to 23pin)_DC-Bias = 4.15V fixed.(Hi-Voltage Mode = OFF) Figure 23. OUT(18 to 23pin)_DC-Bias = 6.0V fixed.(Hi-Voltage Mode = ON) #### **About Advanced switching circuit** #### [1] About Advanced switch #### 1-1. Effect of Advanced switch It is the ROHM original technology for prevention of switching noise. When gain switching such as volume and tone control is done momentarily, a music signal doesn't continue, and unpleasant shock noise is made. Advanced switch can reduce shock noise with the technology which signal wave shape is changed to gently so that a music signal may not continue drastically. Advanced switch starts switching after the control data transmitted by a microcomputer are received. It takes one fixed time, and wave shape transits as the above figure. The data transmitted by a microcomputer are processed inside, and the most suitable movement is done inside the IC so that switching shock noise may not be made.) But, it presumes by the transmitting timing when it doesn't become intended switching wave shape because it is the function which needs time. The example which relations with the switching time of the data transmitting timing and the reality were shown in is given to it in the following. It asks for design when it is confirmed well. ## About a kind of transmission method - A data setup (by the data format,
the thing which isn't indicated by gray) except for the item for advanced switch There is no regulation in transmission specially. - The data setup (by the data format, the thing which gray indication is) of the item for advanced switch Though there is no regulation in data transmission, the switching order when data are transmitted to several blocks follows the next 2-3. ## [2] About transmission DATA of advanced switching item # 2-1. About switching time of advanced switch advanced switch ON/ OFF is set up in ON to make advanced switch function effective. And, though it becomes the same completely, the movement time of advanced switch can set up only MUTE in the independence. As for these, set it up referring to select address 01(hex) of the data format. There are transition time to be equivalent to the setup value, and treatment time (effect-less time) inside the IC in advanced switch. Therefore, actual switching time (Tsoft and Tsoft, MUTE) is defined as follows. Setup value 11.2msec should be recommended in switch time of advanced switch. But, when a shock noise level during gain switching isn't sufficient, it has the possibility that it can be reduced by setting it up more this long on the actual use. But, be careful because an response in switching of around one time becomes slow when you lengthen time. 2-2. About the data transmitting timing in same block state and the switching movement. ## ■ Transmitting example 1 A time chart to the switching start has become the next since the data transmission. The interval of the same blocks is fully left, and the example when data are transmitted is shown first. And, as for enough interval, it becomes the time when setup time was multiplied by the dispersion margin 1.4. ## ■ Transmitting example 2 Next, when a transmitting interval isn't sufficient, the example of (When it is shorter than the above interval.) is shown. The next switching movement is started in succession after that movement is finished when data are transmitted during the first switching movement. ## ■ Transmitting example 3 Next, the example of the switching movement when a transmitting interval was shortened more is shown. It has the buffer which memorizes data inside the IC, and a buffer always does transmitting data. But, data of +6dB which transmitted to the second become invalid with this example to hold only the latest data. #### ■ Transmitting example 4 As for handling of refresh-data, advanced switch movement isn't started to judge for present setup data and a difference that to be inside the IC) #### 2-3. About the data transmitting timing in several block state and the switching movement.) When data are transmitted to several blocks, treatment in the BS (block state) unit is carried out inside the IC. The movement start order of advanced switch is decided by BS in advance.) Figure 24. The order of advanced switch start XIt is possible in the block in the same BS that switching is started at the same timing. # ■Transmitting example 5 The timing of the switching start follows the figure of the former page though there is no restriction of the I^2C BUS data transmitting timing as it explained in the former knot even if it is related to the transmission to several blocks. Therefore, it isn't based on the data transmitting order, and an actual switching turn becomes the turn of the upper figure. (Transmitting example 6) Each block data is being transmitted with the transmitting example 5 separately. But, it becomes the same result even if data are transmitted in bulk.) ## ■Transmitting example 6) Switching of the next BS is done after the present switching completion when an actual switching order is different from the transmitting order, and data except for the same BS are transmitted at the timing when advanced switch movement isn't finished.) The case that the same BS3 and BS2 were transmitted during BS1 switching is shown with the next example. (Transmitting example 7) # ■Transmitting example 7 # 2-4. About Gain switch of TONE (Bass/Middle/Treble) It becomes two-step transition movement that it passed through 0dB 【 Gain of Bass/Middle/Treble 】 to prevent the occurrence of the switching noise when Gain is changed from boost to the cut (or, from the cut, boost). And, when boost/cut doesn't change, it is the same as 【 2-2 】 【 2-3 】. But, it is in the same way as other switching as advanced switch switching time.) # ■Transmitting example 8 When it is changed Bass+15dB from Bass-15dB. (Initial: Bass-15dB) # [3] About advanced switch of MUTE Advanced switch of MUTE is controllable independently of other advanced switch. There is no regulation about the timing to which MUTE is applied, and the timing to cancel. # ■ Transmitting example 9 Normal MUTE ON/OFF ■ Transmitting example 10 The movement when it was canceled earlier than advanced switch time of MUTE ■Advanced switch transmitting timing list ## (1) [MUTE] | | Stand-by advanced switch | working advanced switch | |------------------------|--------------------------------------|-------------------------| | Data transfer timing | No constraint | No constraint | | Operation start timing | After send data | After send data | | Advanced switch time | T _{soft_MUTE} ^{※1} | T _{soft_MUTE} | (2) [VOL/FAD(F1,F2,R1,R2,S1,S2)/MIX(M1,M2)/TONE(BAS,MID.TRE,LOUD)] | | Stand-by advanced switch | working advanced switch | |------------------------|---------------------------------|-----------------------------| | Data transfer timing | No constraint | No constraint | | Operation start timing | After send data | After finished current work | | Advanced switch time | T _{soft} ^{*2} | T _{soft} | (3) 【 TONE BOOST ⇔ CUT 】 | | Stand-by advanced switch | working advanced switch | |------------------------|---------------------------------|-----------------------------| | Data transfer timing | No constraint | No constraint | | Operation start timing | After send data | After finished current work | | Advanced switch time | T _{soft} ^{%3} | T _{soft} | - ¾1 As for T_{soft,MUTE}, mentioned advanced switch of MUTE movement time is expressed to the data format. It is equivalent by the explanation in the body in one block. - X2 As for Tsoft, the time of two times of mentioned advanced movement time is expressed to the data format. It changes to block it in the same way by the explanation in the body by the continuance twice. # About Output level detector #### <function> Output level detector is circuit for detection whether output level of IC are into threshold level. #### <specification> You can select output of detection by "block selects (I²C control)". When output level are into threshold level that selected by "Threshold level select (I²C control)",output level of OLD is "H"(3.3V). Figure 25. Block diagram of output level detector #### Select address 90(hex) | Function Name | Mode | MSB | | | Output Lev | el Detector | | | LSB | |---------------|--------|-----|----|----|------------|-------------|----|----|-----| | Function Name | iviode | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | OUT R2 | OFF | | | | | | | | 0 | | ON/OFF | ON | | | | | | | | 1 | | OUT R1 | OFF | | | | | | | 0 | | | ON/OFF | ON | | | | | | | 1 | | | OUT F2 | OFF | | | | | | 0 | | | | ON/OFF | ON | | | | | | 1 | | | | OUT F1 | OFF | | | | | 0 | | | | | ON/OFF | ON | | | | | 1 | | | | | | ±30mV | | | 0 | 0 | | | | | | Threshold | ±45mV | | | 0 | 1 | | | | | | Level Select | ±60mV | | | 1 | 0 | | | | | | | ±75mV | | | 1 | 1 | | | | | Please set Select Address 90(hex), D3toD0=0,0,0,0 at Output Level Detector OFF. $C_{OLD} = C1 \times Zin / R_{OLD}$ C1: Coupling capacitance between output of BD37034FV-M and input of power-amp. Zin: Input impedance of power-amp R_{OLD}: Input impedance of OLDC-port Select Address 90(hex) Input impedance is $20k\Omega$ at Output level detector OFF(Select Address 90(hex) D3toD0=0,0,0,0). ## **Application Circuit Diagram** Figure 26. Application Circuit Diagram Unit R : [Ω] C : [F] # **Notes on wiring** - ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND. - ② Lines of GND shall be one-point connected. - ③ Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable. - Lines of SCL and SDA of I²C BUS shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other. - Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other. ## **Thermal Derating Curve** About the thermal design by the IC Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation. Figure 27. Temperature Derating Curve Note) Values are actual measurements and are not guaranteed. Power dissipation values vary according to the board on which the IC is mounted. **Terminal Equivalent Circuit and Description** | Terminal
No. | Terminal
Name | Terminal
Voltage | Equivalent Circuit | Terminal Description | |----------------------------------|---------------------------------------|----------------------------------|-----------------------------|--| | 1
2
3
4
5
6 | A1
A2
B1
B2
C1
C2 | 4.15 | VCCL
VΘ
100KΩ | A terminal for signal input. The input impedance is $100k\Omega(typ)$. | | 7
8
9
10
11 | DP1
DN
DP2
EP1
EN1
EP2 | 4.15 | VCC VB Anti ESD Anti ESD | A terminal for signal input. The input impedance is 100kΩ(typ). | | 12 | MIN
EN2 | 4.15 | VCC | A terminal for signal input. The input impedance is 100kΩ(typ). | | 15 | MUTE | - | VCCL | A
terminal for external compulsory mute. If terminal voltage is High level, the mute is off. And if the terminal voltage is Low level, the mute is on. | | 18
19
20
21
22
23 | OUTS2 OUTS1 OUTR2 OUTR1 OUTF2 OUTF1 | 4.15/6.0
HiVoltage
=OFF/ON | VCC
GND | A terminal for fader and Subwoofer output. | The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value. | Terminal
No. | Terminal
Name | Terminal
Voltage | Equivalent Circuit | Terminal Description | |-----------------|------------------|---------------------|--------------------|--| | 25 | SCL | - | VCCL
1.65V | A terminal for clock input of I ² C BUS communication. | | | | - | VCCL | A terminal for data input of I ² C BUS communication. | | 26 | SDA | | 9ND 1.65V | | | 28 | VREF | 4.15 | VCCL
12.5k | Voltage for reference bias of analog signal system. The simple pre-charge circuit and simple discharge circuit for an external capacitor are built in. | | 24 | VCCL | 8.5 | | Power supply terminal. | | 14 | VCCH | 8.5/12 | | | | 27 | GND | 0 | | Ground terminal. | The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value. | Terminal | Terminal | Terminal | Equivalent Circuit | Terminal Description | |----------|--------------|---------------------------------------|---------------------|--| | No. | Name
LRST | Voltage | VCC 1.65V 1.65V | A terminal for level meter reset. If terminal voltage is High level, the reset is on. And if the terminal voltage is Low level, the reset is off. | | | OLDC | 4.15/
4.73
HiVoltage
=OFF/ON | VCCL | A terminal for filter of output level detector. Input impedance is 25k(OUTF/R both ON) or $50k\Omega(OUTF/R \text{ either ON})$ at Output level detector ON, $20k\Omega$ at Output level detector OFF. | | | LOUT | | VCC
1.5k
GND | A terminal for Level meter output. | | 17 | OLD | 0
3.3 | VCCL
3.3 V | A terminal for output of output level detector. | The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value. Notes for use #### 1. Absolute maximum rating voltage When it impressed the voltage on VCC more than the absolute maximum rating voltage, circuit currents increase rapidly, and there is absolutely a case to reach characteristic deterioration and destruction of a device. In particular in a serge examination of a set, when it is expected the impressing serge at VCC terminal (14,24pin), please do not impress the large and over the absolute maximum rating voltage (including a operating voltage + serge ingredient (around 14V)) # 2.About a signal input part 1)In the signal input terminal, the constant setting of input coupling capacitor C(F) be sufficient input impedance $R_{IN}(\Omega)$ inside IC and please decide. The first HPF characteristic of RC is composed. 2) SHORT mode is the command which makes switch S_{SH} =ON an input selector part and input impedance RIN of all terminals, and makes resistance small. Switch S_{SH} is OFF when not choosing a SHORT command. A constant time becomes small at the time of this command twisting to the resistance inside the capacitor connected outside and LSI. The charge time of a capacitor becomes short. Since SHORT mode turns ON the switch of S_{SH} and makes it low impedance, please use it at the time of a non-signal. # 3.About Mute terminal(15pin) when power supply is off Any voltage shall not be supplied to Mute terminal (15pin) when power-supply is off. Please insert a resistor (about $2.2k\Omega$) to Mute terminal in series, if voltage is supplied to mute terminal in case. (Please refer Application Circuit Diagram.) #### 4. About Hi-Voltage function About Logic of Hi-Voltage function is follow as. # Hi-Voltage ON/OFF | Hivoltage ON/OFF(Select Address 01hex, D2) | 0 | 0 | 1 | 1 | - | |--|------|------|---|---|------| | Level Shift(Select Address 01hex, D3) | 0 | 1 | 0 | 1 | - | | Level of amplification in the output-unit | 0 | 3 | 6 | 6 | [dB] | | Bias-voltage in the output-unit | 4.15 | 4.15 | 6 | 6 | [V] | Hi-Voltage ON - Though the level of amplification in the output-unit is controlled with Level Shift (Select Address 01hex, D3), it becomes a +6dB fixation under the condition of Hi-Voltage function is ON. - Under the condition of Hi-Voltage function is OFF, 0dB/+3dB switching is possible by the setup of Level Shift. - · Under the condition of Hi-Voltage function is OFF, bias-voltage is 4.15V regardless of the setup of Level Shift. - The use of the external MUTE on the set side is recommended because shock noise by the DC step is made when ON/OFF switching of the Hi-Voltage function is done. - The initial condition of Hi-Voltage function is Hi-Voltage=ON after a power supply is started) # **Ordering Information** # **Physical Dimension Tape and Reel Information** ## SSOP-B28 # Marking Diagram(s)(TOP VIEW) **Revision history** | Date | Revision | Changes | |------------|----------|-------------| | 3.APR.2013 | 001 | New Release | | Date | Revision | Changes | |------------|----------|--| | 4.OCT.2013 | 002 | All page | | | | delete | | 4.OCT.2013 | 002 | Page 2 | | | | < Sub Title> | | | | Sound Processors for Car Audios ⇒ Analog Audio Processors series change. | | | | <feature></feature> | | | | AEC-Q100 Qualified add. | | | | <logo></logo> | | | | PbFree, RoHS delete | | 4.OCT.2013 | 002 | Page 3 | | | | Power Dissipation mW ⇒ W change. | | 4.OCT.2013 | 002 | Page 43 | | | | Ordering Information, E2 ⇒ ME2 change. | # **Notice** ## **Precaution on using ROHM Products** 1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications | JÁPAN | USA | EU | CHINA | |---------|----------|------------|-----------| | CLASSⅢ | CLACCIII | CLASS II b | CL ACCIII | | CLASSIV | CLASSⅢ | CLASSⅢ | CLASSⅢ | - 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: - [a] Installation of protection circuits or other protective devices to improve system safety - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure - 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂ - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items - [f] Sealing or coating our Products with resin or other coating materials - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering - [h] Use of the Products in places subject to dew condensation - 4. The Products are not subject to radiation-proof design. - 5. Please verify and confirm characteristics of the final or mounted products in using the Products. - 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. - 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. - 8. Confirm that operation temperature is within the specified range described in the product specification. - 9. ROHM shall not be in any way
responsible or liable for failure induced under deviant condition from what is defined in this document. # Precaution for Mounting / Circuit board design - 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. - 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification # **Precautions Regarding Application Examples and External Circuits** - If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. - You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. #### **Precaution for Electrostatic** This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control). # **Precaution for Storage / Transportation** - 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 - [b] the temperature or humidity exceeds those recommended by ROHM - the Products are exposed to direct sunshine or condensation - [d] the Products are exposed to high Electrostatic - 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. - 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. - Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. # **Precaution for Product Label** QR code printed on ROHM Products label is for ROHM's internal use only. #### **Precaution for Disposition** When disposing Products please dispose them properly using an authorized industry waste company. ## **Precaution for Foreign Exchange and Foreign Trade act** Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. ## **Precaution Regarding Intellectual Property Rights** - 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: - 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. # **Other Precaution** - 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. - 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. - 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. - The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. ## **General Precaution** - 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document. - 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative. - 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information. Rev.001