

STP16CPC26

Low voltage 16-bit constant current LED sink driver

Datasheet - production data

Features

- 16 constant current output channels
- Adjustable output current through external resistor
- Output current: 5 mA to 90 mA
- ±1% typical current accuracy bit to bit
- Max clock frequency: 30 MHz
- 20 V current generators rated voltage
- 3 5.5 V power supply
- Thermal shutdown for overtemperature protection

Applications

- Video display panel LED driver
- Special lighting

Description

The STP16CPC26 is a monolithic, low voltage, 16-bit constant current LED sink driver. The device contains a 16-bit shift register and data latches, which convert serial input data into parallel output format. In the output stage sixteen regulated current generators provide 5 mA to 90 mA constant current to drive LEDs. The current is externally adjusted through a resistor. LED brightness can be adjusted from 0% to

100% via OE pin.

The STP16CPC26 guarantees a 20 V driving capability, allowing users to connect more LEDs in series to each current source.

The high 30 MHz clock frequency makes the device suitable for high data rate transmission.

The thermal shutdown (170 °C with about 15 °C hysteresis) assures protection from overtemperature events.

The STP16CPC26 is housed in four different packages: QSOP24, SO-24, TSSOP-24 and HTSSOP-24 (with exposed pad).

Order code	Package	Packing
STP16CPC26MTR	SO-24	1000 parts per reel
STP16CPC26TTR	TSSOP24	2500 parts per reel
STP16CPC26XTR	TSSOP24 exposed pad	2500 parts per reel
STP16CPC26PTR	QSOP-24	2500 parts per reel

Table 1: Device summary

This is information on a product in full production.

Contents

Cor	ntents		
1	Pin desc	cription	3
2	Electrica	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
3	Electrica	al characteristics	5
4	Simplifie	ed internal block diagram	8
5	Typical a	application circuit	8
6	Equivale	ent circuit and outputs	9
7	Typical t	test circuits	11
8	Timing o	liagrams	12
9	Current	generators characteristics	15
	9.1	Current setting	15
	9.2	Current accuracy	15
	9.3	Generators voltage drop	16
10	Thermal	shutdown	16
11	Package	e information	17
	11.1	QSOP-24 package information	
	11.2	SO-24 package information	20
	11.3	TSSOP24 package information	21
	11.4	TSSOP24 exposed pad package information	23
	11.5	TSSOP24, TSSOP24 exposed pad and	
		SO-24 packing information	
12	Revisior	n history	27

1 Pin description

F	igure 1: Pin co	nnection	
	\square		
GND		24 🛛 V _{DD}	
SDI	[2	23 🛛 R-EXT	
CLK	[] 3	22] SDO	
LE	[₄	21 0E	
ουτο	[5	20 OUT15	
OUT1	6	19 OUT14	
OUT2	[7	18] OUT13	
OUT3	8]	17] OUT12	
OUT4	e]]	16 🛛 OUT11	
OUT5	[10	15] OUT10	
OUT6	[11	14 OUT9	
OUT7	[12	13 OUT8	
		15120	
	63	10120	GIPD140320161440MT

The exposed-pad (if present) should be electrically connected to a metal land electrically isolated or connected to ground.

Pin n°	Symbol	Name and function		
1	GND	Ground terminal		
2	SDI	Serial data input terminal		
3	CLK	Clock input terminal		
4	LE	ch input terminal		
5-20	OUT 0-15	put terminal		
21	OE	Input terminal of output enable (active low)		
22	SDO	Serial data out terminal		
23	R-EXT	Input terminal for an external resistor for constant current programming		
24	V _{DD}	Supply voltage terminal		

Table 2: Pin description

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current	90	mA
VI	Input voltage	-0.4 to V _{DD} +0.4	V
Ignd	GND terminal current	1600	mA
ESD	Electrostatic discharge protection HBM human body model	±2	kV
fськ	Clock frequency	30	MHz

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Value	Unit	
TA	Operating free-air temperature range	-40 to +125	°C	
TOPR	Operating temperature range	-40 to +150	°C	
TSTG	Storage temperature range	-55 to +150	°C	
		SO-24	60	°C/W
	Thermal resistance junction-ambient ⁽¹⁾	TSSOP24	85	°C/W
RthJA		TSSOP24 ⁽²⁾ exposed pad	37.5	°C/W
		QSOP-24	72	°C/W

Notes:

⁽¹⁾ According with JEDEC standard 51-7.

⁽²⁾ The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

3 Electrical characteristics

 V_{DD} = 3.3 V - 5 V, T_{A} = 25 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{dd}	Supply voltage		3		5.5	
V _{IH}	Input voltage high level		0.8*Vdd	-	Vdd	V
VIL	Input voltage low level		GND	-	0.2*Vdd	v
Vol	Serial data output voltage	I _{OH} = - 1 mA	-	-	0.4	
Vон	(SDO) ⁽¹⁾	l _{o∟} = + 1 mA	V _{DD} -0.4	-	-	
Іон	Output leakage currentVo = 20 V, Outn = OFF		-	-	0.5	μA
ΔI_{OL1}	Current accuracy	Vds = 0.3 V, R _{EXT} = 900 W, I _{OL} = 22 mA	-	±1	±3	0/
ΔI_{OL2}	channel to channel ⁽²⁾⁽³⁾	Vds = 0.6 V, R _{EXT} = 360 W, I _{OL} = 55 mA	-	±1	±3	%
DIol3	Current accuracy	Vds = 0.3 V, R _{EXT} = 900 W, I _{OL} = 22 mA	-	-	±6	~
ΔI _{OL4}	device to device ⁽²⁾	Vds = 0.6 V, R _{EXT} = 360 W, I _{OL} = 55 mA	-	-	±6	%
R _{IN(up)}	Pull-up resistor for OE pin		250	500	800	
R _{IN(down)}	Pull-down resistor for LE pin		250	500	800	KW
IDD(OFF1)		R _{EXT} = OPEN OUT 0 to 15 = OFF	-	3	7	
IDD(OFF2)	Supply current (OFF)	R _{EXT} = 900 W OUT 0 to 15 = OFF	-	7	10	mA
IDD(OFF3)		R _{EXT} = 360 W OUT 0 to 15 = OFF	-	11	13.5	
IDD(ON1)		R _{EXT} = 900 W OUT 0 to 15 = ON	-	7	11	
IDD(ON2)	Supply current (ON)	R _{EXT} = 360 W OUT 0 to 15 = ON	-	11	15	
%/dV _{DS}	Output current vs. output voltage regulation	V _{DS} from 1.0 V to 3.0 V lo = 22 mA lo = 55 mA	-	±0.1	-	%/V

Electrical characteristics

STP16CPC26

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
%/dV _{DD}	Output current vs. supply voltage regulation ⁽⁴⁾	lo = 22 mA; V _{DS} = 0.3 V lo = 55 mA; V _{DS} = 0.6 V	-	±1	-	%/V
Tsd	Thermal shutdown		-	170	-	°C
Tsd-hy	Thermal shutdown hysteresis (4)		-	15	20	C

Notes:

⁽¹⁾ Specification referred to TJ from -40 °C to +125 °C. Specification over the -40 to +125 °C TJ temperature range are assured by design, characterization and statistical correlation.

⁽²⁾ Tested with just one output ON.

⁽⁴⁾ Guaranteed by design.

V_{DD} = 3.3 V - 5 V, T_j = 25 °C, unless otherwise specified.
--

	-	Tab	le 6: Switching cha	racteristics				
Symbol		Parameter	Conditi	ons	Min.	Тур.	Max.	Unit
f _{clk}	Clo	ock frequency			-	-	30	MHz
t _{PLH1}	CLK - OUTn				-	100	-	
tPLH2	LE - OUTn	Description delay time			-	100	-	
t _{PLH3}	OE – OUTn	Propagation delay time ("L" to "H")			-	100	-	
t PLHa	CLK - SDO			VDD = 3.3 V	-	30	-	
t _{PLHb}	CLK - SDO			VDD = 5 V	-	20	-	
tPHL1	CLK - OUTn	Propagation delay time ("H" to "L")	VDS = 0.8 V VIH = VDD		-	28	-	
tPHL2	LE - OUTn				-	28	-	
t _{PHL3}	OE – OUTn				-	25	-	
t _{PHLa}	CLK - SDO		VIL = GND	VDD = 3.3 V	-	30	-	
t PHLb	CLK - SDO		R _{EXT} = 900 Ω	VDD = 5 V	-	20	-	
t _{w(CLK)}	CLK	Pulse width	RL = 50 Ω		20	-	-	
$t_{w(L)}$	LE		CL = 10 pF		20	-	-	
$t_{w(OE)}$	OE				150	-	-	
t _{su(L)}	Set	tup time for LE			5	-	-	
t _{h(L)}	Ho	ld time for LE			5	-	-	ns
t _{su(D)}	Set	up time for SDI			5	-	-	
t _{h(D)}	Ho	ld time for SDI			10	-	-	
tr ⁽¹⁾	Maxim	um CLK rise time			-	-	5000	
tf (1)	Maxim	num CLK fall time			-	-	5000	
t _{or1a}	Outpu	t rise time of Vout	VIH = VDD,	VDD = 3.3 V	-	95	-	
t _{or1b}	Outpu	t rise time of Vout	VIL = GND	VDD = 5 V	-	85	-	
t _{of1a}	Outpu	t fall time of Vout	VDS = 0.8 V, RL = 50 Ω	VDD = 3.3 V	-	40	-	
t _{of1b}	Outpu	t fall time of Vout	CL = 10 pF lout = 22 mA	VDD = 5 V	-	25	-	
t _{or2a}	Outpu	t rise time of Vout	VIH = VDD,	VDD = 3.3 V	-	80	-	
t _{or2b}	Outpu	t rise time of Vout	VIL = GND	VDD = 5 V	-	70	-	
t _{of2a}	Outpu	t fall time of Vout	VDS = 0.8 V	VDD = 3.3 V	-	40	-	
t _{of2b}	Outpu	t fall time of Vout	RL = 50 Ω CL = 10 pF lout = 55 mA	VDD = 5 V	-	30	-	
l _{out-ov}	Output cur	rent turn-on overshoot	VDS = 0.6 to 3V CL = 10 pF lout = 5 to 60 mA		-	-	0	%

Notes:

⁽¹⁾If devices are connected in cascade and tr or tf is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

4 Simplified internal block diagram

5 Typical application circuit

6 Equivalent circuit and outputs

Figure 5: LE terminal

Figure 6: CLK, SDI terminal

7 **Typical test circuits**

Figure 8: "Typical test circuit for electrical characteristics" and Figure 9: "Typical test circuit for switching characteristics" show respectively the typical test circuit used measuring electrical (e.g. input voltage high/low level, output leakage current, supply current, etc.) and switching characteristics (propagation delays, set-up and hold time, rise and fall time of V_{OUT} , etc.). The resistor R_L and capacitor C_L in parallel connected to each output in *Figure* 8: "Typical test circuit for electrical characteristics" simulate a LED behavior.

8 Timing diagrams

The timing diagram shown in *Figure 10: "Timing diagram"* and the truth table in *Table 7: "Truth table"* explain how to send data to the device. This can be summarized in the following points:

- LE and OE are level sensitive and not synchronized with the CLK signal
- When LE is at low level, the latch circuit holds previous data
- If LE is high level, data present in the shift register are latched
- When OE is at low level, the status of the outputs OUT0 to OUT15 depends on the data in the latch circuits
- With OE at high level, all outputs are switched off independently on the data stored in the latch circuits
- Every rising edge of the CLK signal, a new data on SDI pin is sampled. This data is loaded into the shift register, whereas a bit is shifted out from SDO

Figure 10: Timing diagram

Table 7: Truth table

Clock	LE	OE	Serial-IN	OUT0 OUT7 OUT15 (1)	SDO
_ -	н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
_ -	L	L	Dn + 1	No change	Dn - 14
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
- _	Х	Н	Dn + 3	OFF	Dn - 13

Notes:

⁽¹⁾ OUTn = ON when Dn = H, OUTn = OFF when Dn = L.

DocID18469 Rev 6

The correct sampling of the data depends on the stability of the data at SDI on the rising edge of the clock signal and it is assured by a proper data setup and hold time (t_{SETUP1} And t_{HOLD}), as shown in *Figure 11: "Timing for clock signal, serial-in and serial out data"*. The same figure shows the propagation delay from CLK to SDO (t_{PLH}/t_{PHL}). *Figure 12: "Timing for clock signal serial-in data, latch enable, output enable and outputs"* describes the setup times for LE and \overline{OE} signals (t_{SETUP2} and t_{SETUP3} respectively), the minimum duration of these signals (t_{WLAT} and t_{WENA} respectively) and the propagation delay from CLK to OUT_n, LE to OUT_n and \overline{OE} to OUT_n (t_{PLH1}/t_{PHL1} , t_{PLH2}/t_{PHL2} and t_{PLH3}/t_{PHL3} respectively). Finally *Figure 13: "Outputs"* defines the turn-on and turn-off time (t_r and t_f) of the current generators.

57

Timing diagrams

Figure 13: Outputs

9 **Current generators characteristics**

9.1 **Current setting**

The current of all outputs is programmed through an external resistor connected to R-EXT pin, as shown in Figure 14: "Resistor for current programming". The curve in Figure 15: "Output current vs R-EXT resistor" describes the relation between the current and the resistor connected to R-EXT pin, whereas the Table 8: "Recommended values of Rext for some output current value" shows how to set some typical current values.

Figure 14: Resistor for current programming

Figure 15: Output current vs R-EXT resistor

Table 8: Recommended values of Rext for some output current value

Output current [mA]	R _{ext} [Ω]	Closer standard value (E24 series) [Ω]
5	4129	4300
10	2005	200
20	999	1000
40	471	470
60	322	330
90	217	220

Current accuracy 9.2

A typical current accuracy of ±1% (±3% maximum) between channels is guaranteed at 22 mA and 55 mA output current (refer to Table 6: "Switching characteristics") and ± 6% (maximum) current accuracy between ICs.

DocID18469 Rev 6

9.3 Generators voltage drop

In order to correctly regulate the current, a minimum dropout voltage must be assured across the current generators.

Figure 16: "Dropout voltage vs output current" and *Table 9: "Dropout voltage vs output current"* provides just an indicative idea about the dropout voltage to assure over the current range. However it is recommended to use value of V_{DROP} slightly higher than those indicated in *Figure 16: "Dropout voltage vs output current"* and *Table 9: "Dropout voltage vs output current"*.

Table 9: Dropout voltage vs output current

Output current [mA]	V _{DROP} @ 3.3 V [mV]	V _{DROP} @ 5 V [mV]
5	44	44
10	85	85
20	170	170
40	350	330
60	530	500
90	820	770

10 Thermal shutdown

The STP16CPC26 is featured with a thermal shutdown. This protection is triggered if the junction temperature reaches 170 °C. When the thermal shutdown is activated, all outputs are turned off independently on the data latched. Once the temperature decreases (thermal shutdown hysteresis is typically 15 °C), the outputs are enabled again and the device keeps on working.

Once the temperature decreases (thermal shutdown hysteresis is typically 15°C), the outputs are enabled again and the device keeps on working.

11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 QSOP-24 package information

STP16CPC26

Package information

Table 10: QSOP-24 mechanical data				
Dim	mm			
Dim.	Min.	Тур.	Max.	
A	1.54	1.62	1.73	
A1	0.10	0.15	0.25	
A2		1.47		
b	0.20		0.31	
с	0.17		0.254	
D	8.56	8.66	8.76	
E	5.80	6.00	6.20	
E1	3.80	3.91	4.01	
е		0.635		
L	0.40	0.635	0.89	
h	0.25	0.33	0.41	
<	0°		8°	

11.2 SO-24 package information

20/28

DocID18469 Rev 6

STP16CPC26

Package information

Table 11: SO-24 mechanical data				
Dim.	mm			
Dini.	Min.	Тур.	Max.	
A	2.35		2.65	
A1	0.10		0.30	
В	0.33		0.51	
С	0.23		0.32	
D	15.20		15.60	
E	7.40		7.60	
е		1.27		
Н	10.00		10.65	
h	0.25		0.75	
L	0.40		1.27	
k	0		8	
ddd			0.10	

11.3 TSSOP24 package information

Figure 19: TSSOP24 package outline

Package information

Table 12: TSSOP24 mechanical data

STP16CPC26

Dim.	mm			
Dini.	Min.	Тур.	Max.	
А			1.1	
A1	0.05		0.15	
A2		0.9		
b	0.19		0.30	
С	0.09		0.20	
D	7.7		7.9	
E	4.3		4.5	
е		0.65 BSC		
Н	6.25		6.5	
К	0°		8°	
L	0.50		0.70	

57

Figure 20: TSSOP24 exposed pad package outline

DocID18469 Rev 6

Package information

Table 13: TSSOP24 exposed pad mechanical data

STP16CPC26

Table 13. 1990/ 24 exposed pad mechanical data				
Dim.	mm			
Dini.	Min.	Тур.	Max.	
A			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	7.70	7.80	7.90	
D1	4.80	5.00	5.2	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	3.00	3.20	3.40	
е		0.65		
L	0.45	060	075	
L1		1.00		
k	0°		8°	
aaa			0.10	

11.5 TSSOP24, TSSOP24 exposed pad and SO-24 packing information

Dim.	mm			
Dini.	Min.	Тур.	Max.	
A		-	330	
С	12.8	-	13.2	
D	20.2	-		
Ν	60	-		
Т		-	22.4	
Ao	6.8	-	7	
Во	8.2	-	8.4	
Ко	1.7	-	1.9	
Po	3.9	-	4.1	
Р	11.9	-	12.1	

Package information

Table 15: SO-24 tape and reel mechanical data

STP16CPC26

Dim	mm			
Dim.	Min.	Тур.	Max.	
А		-	330	
С	12.8	-	13.2	
D	20.2	-		
N	60	-		
Т		-	30.4	
Ao	10.8	-	11.0	
Во	15.7	-	15.9	
Ко	2.9	-	3.1	
Po	3.9	-	4.1	
Р	11.9	-	12.1	

12 Revision history

Table 16: Document revision history

Date	Revision	Changes
04-Mar-2011	1	First release
05-Apr-2011	2	Updated Table 6
19-Jul-2012	3	Updated Table 7.
19-Jul-2012	4	Updated characteristics in Table 5: Electrical characteristics and Table 6: Switching characteristics. Minor text changes.
1-Jun-2014	5	Updated template and value Table 13: TSSOP24 exposed pad mechanical data.
13-Apr-2017	6	Updated Figure 11: "Timing for clock signal, serial-in and serial out data" and Figure 12: "Timing for clock signal serial-in data, latch enable, output enable and outputs", Section 11.1: "QSOP-24 package information". Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

