

Low voltage 16-bit constant current LED sink driver with output error detection

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- 3.3 V micro driver-able
- Output current: 20-100 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection: 2 kV HBM, 200 V MM

Description

The STP16DPS05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device contains a 16-bit serial-in, parallel-out shift register that

feeds a 16-bit D-type storage register. In the output stage, sixteen regulated current sources were designed to provide 5-100 mA constant current to drive the LEDs.

The STP16DPS05 features open and short LED detections on the outputs. The STP16DPS05 is backward compatible with STP16C/L596.The detection circuit checks 3 different conditions that can occur on the output line: short to GND, short to Vo or open line.

The data detection results are loaded in the shift register and shifted out via the serial line output.

The detection functionality is implemented without increasing the pin count number, through a secondary function of the LATCH and output enable pin (DM1 and DM2 respectively), a dedicated logic sequence allows the device to enter or leave from detection mode. Through an external resistor, users can adjust the STP16DPS05 output current, controlling in this way the light intensity of LEDs, in addition, user can adjust LED's brightness intensity from 0% to 100% via OE/DM2 pin.

The STP16DPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, makes the device suitable for high data rate transmission. The 3.3 V voltage supply is well useful for applications that interface any 3.3 V micro. Compared with a standard TSSOP package, the TSSOP exposed pad increases heat dissipation capability by a 2.5 factor.

Table 1: Device summary				
Order code	Package	Packing		
STP16DPS05MTR	SO-24 (tape and reel)	1000 parts per reel		
STP16DPS05TTR	TSSOP24 (tape and reel)	2500 parts per reel		
STP16DPS05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel		
STP16DPS05PTR	QSOP-24	2500 parts per reel		

April 2017

DocID16538 Rev 3

This is information on a product in full production.

Contents

1	Summa	ry description	3
	1.1	Pin connection and description	3
2	Electric	al ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Thermal data	4
	2.3	Recommended operating conditions	5
3	Electric	al characteristics	6
4	Equival	ent circuit and outputs	8
5		diagrams	
6	Typical	characteristics	14
7	Detectio	on mode functionality	16
	7.1	Phase one: "entering in detection mode"	16
	7.2	Phase two: "error detection"	17
	7.3	Phase three: "resuming normal mode"	19
	7.4	Error detection conditions	19
	7.5	Auto power-saving	22
8	Packag	e information	
	8.1	QSOP-24 package information	26
	8.2	TSSOP24 package information	27
	8.3	SO-24 package information	28
	8.4	TSSOP exposed pad package information	
	8.5	TSSOP24, TSSOP24 exposed pad and	
		SO-24 packing information	32
9	Revisio	n history	

1 Summary description

.	Current accuracy				-	
Output voltage	Between bits	Between ICs	Output current	V _{DD}	Temperature	
≥ 1.3 V	± 1.5%	± 5%	20 to 100 mA	3.3 V to 5 V	25 °C	

Table 2: Typical current accuracy

1.1	Pin connection and description
-----	--------------------------------

Figure 1: Pin connection					
	<i></i>	7			
GND [1 24	v v oo			
SDI [2 23	R-EXT			
CLK [3 22	sdo			
LE/DM1 [4 21] <u>OE – DM2</u>			
ουτο [5 20	0 OUT15			
OUT1 [6 19	0] OUT14			
OUT2 [7 18	DUT13			
ОИТЗ [8 17	DUT12			
OUT4 [9 16	D OUT11			
OUT5 [10 15	D OUT10			
ουτε [11 14	ο ουτ9			
ουτ7 [12 13				
	CS15121				
	65,6,2,	AMG170	220171200MT		

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3: Pin description

Pin n°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal - detect mode 1 (see operation principle)
5-20	OUT 0-15	Output terminal
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal for an external resistor for constant current programming
24	V _{DD}	Supply voltage terminal
		DecID46529 Dev 2

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the *Table 4: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		5-	
Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
lo	Output current	100	mA
Vı	Input voltage	-0.4 to V _{DD}	V
Ignd	GND terminal current	1600	mA
f _{CLK}	Clock frequency	50	MHz
TJ	Junction temperature range ⁽¹⁾	-40 to + 170	°C

Table 4: Absolute maximum ra	atings
------------------------------	--------

Notes:

⁽¹⁾ Such absolute value is achieved according the thermal shutdown.

2.2 Thermal data

Table 5: Thermal data

Symbol	Parameter	Value	Unit	
T-OPR	Operating temperature range		-40 to +125	°C
Tstg	Storage temperature range		-55 to +150	°C
	Thermal resistance junction-ambient ⁽¹⁾	SO-24	42.7	°C/W
		TSSOP24	55	°C/W
RthJA		TSSOP24 ⁽²⁾	37.5	°C/W
		exposed pad	57.5	C/W
		QSOP-24	55	°C/W

Notes:

⁽¹⁾ According with JEDEC JESD51-7.

⁽²⁾ The exposed pad should be soldered directly to the PCB to obtain the thermal benefits.

2.3 Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		3	-	5.5	V
Vo	Output voltage			-	20	V
lo	Output current	OUTn	5	-	100	mA
Іон	Output current	SERIAL-OUT		-	+1	mA
lol	Output current	SERIAL-OUT		-	-1	mA
VIH	Input voltage		$0.7 V_{DD}$	-	V _{DD} +0.3	V
VIL	Input voltage		-0.3	-	0.3 V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		6	-		ns
t _{wCLK}	CLK pulse width		8	-		ns
t _{wEN}	OE/DM2 pulse width	Vpp = 3.0 V to 5.0 V	100	-		ns
tsetup(d)	Setup time for DATA		10	-		ns
thold(d)	Hold time for DATA		5	-		ns
tsetup(L)	Setup time for LATCH		10	-		ns
fclк	Clock frequency	Cascade operation ⁽¹⁾		-	30	MHz

Notes:

 $^{(1)}$ If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 V_{DD} = 5 V, T_A = 25 °C, unless otherwise specified.

Table 7: Electrical characteristics	Table	7: Electrical characteristics	5
-------------------------------------	-------	-------------------------------	---

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vih	Input voltage high level		0.7 V _{DD}		Vdd	V
VIL	Input voltage low level		GND		0.3 V _{DD}	V
I _{ОН}	Output leakage current	V _{OH} = 20 V			1	μA
Vol	Output voltage (serial-OUT)	I _{OL} = 1 mA			0.4	V
Vон	Output voltage (serial-OUT)	I _{OH} = -1 mA	$V_{OH} - V_{DD} = -0.4 V$			V
I _{OL1}		V_{O} = 0.3 V, R_{ext} = 3.9 k Ω	4.25	5	5.75	
IOL2	Output current	V_{O} = 0.3 V, R _{ext} = 970 Ω	19	20	21	
I _{OL3}		V_{O} = 1.3 V, R_{ext} = 190 Ω	96	100	104	mA
Δlol1		V_{O} = 0.3 V, R_{ext} = 3.9 k Ω		± 5	± 8	
ΔI_{OL2}	Output current error between bit (all output ON)	V _O = 0.3 V, R _{ext} = 970 Ω		± 1.5	± 3	%
Δlol3		Vo = 1.3 V, R _{ext} = 190 Ω		± 1.2	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ
RSIN(down)	Pull-down resistor		100	200	400	kΩ
IDD(OFF1)		R _{ext} = 970 OUT 0 to 15 = OFF		5	6	mA
I _{DD(OFF2)}	Supply current (OFF)	R _{ext} = 240 OUT 0 to 15 = OFF		13	14	
IDD(ON1)	Supply surrent (ON)	R _{ext} = 970 OUT 0 to 15 = ON		6	7	
I _{DD(ON2)}	Supply current (ON)	R _{ext} = 240 OUT 0 to 15 = ON		13.5	14.5	
Thermal	Thermal protection ⁽¹⁾			170		°C

Notes:

⁽¹⁾ Guaranteed by design (not tested). The thermal protection switches OFF only the outputs current.

Table 8: Switching characteristics								
Symbol	Parameter	Test con	ditions	Min.	Тур.	Max.	Unit	
t _{PLH1}	Propagation delay time, CLK- OUTn , LE/DM1 = H,		V _{DD} = 3.3 V	-	40 to 44	44	ns	
	OE/DM2 = L		$V_{DD} = 5 V$	-	20 to 44	44		
	Propagation delay time,		V _{DD} = 3.3 V	-	51	77		
tplH2	LE/DM1- OUTn , OE/DM2 = L		$V_{DD} = 5 V$	-	32	47	ns	
	Propagation delay time,		V _{DD} = 3.3 V	-	49 to 57	57 to 77		
tplh3	OE/DM2 - OUTn , LE = H		$V_{DD} = 5 V$	-	27 to 32	32 to 41	ns	
+	Propagation delay time,		$V_{DD} = 3.3 V$	-	21.5 to 22	32		
t _{PLH}	CLK-SDO	Vih = Vdd	$V_{DD} = 5 V$	-	14.5 to 15	21.5	ns	
	Propagation delay time,	$V_{IL} = GND$	V_{DD} = 3.3 V	-	15 to 18	25		
t _{PHL1}	$CLK-\overline{OUTn} , LE/DM1 = H,$ $\overline{OE/DM2} = L$	C _L = 10 pF I _O = 20 mA V _L = 3.0 V	$V_{DD} = 5 V$	-	11 to 13	14.5 to 16	ns 16	
	Propagation delay time,	R _{ext} = 1 KΩ R _L = 60 Ω	V _{DD} = 3.3 V	-	13 to 18	18 to 25		
tphl2	LE/DM1 -OUTn , OE/DM2 = L		V _{DD} = 5 V	-	9 to 12	12.5 to 15	ns	
	Propagation delay time,		$V_{DD} = 3.3 V$	-	11.5 to 12	12 to 18		
t _{PHL3}	OE/DM2 - OUTn , LE/DM1 = H		$V_{DD} = 5 V$	-	8.5 to 10	9.7 to 12	ns	
t PHL	Propagation delay time,		V_{DD} = 3.3 V	-	25.5	38	ns	
IPHL	CLK-SDO		$V_{DD} = 5 V$	-	17.5 to 20.5	25	115	
	Output rise time 10~90% of]	$V_{DD} = 3.3 V$	-	34 to 20	24 to 53.5	ns	
UN	voltage waveform		$V_{DD} = 5 V$	-	12.5 to 9	9 to 18.5	10	
toff	Output fall time 90~10% of		$V_{DD} = 3.3 V$	-	5.5 to 3.3	3.3 to 8.5	5 ns	
UFF	voltage waveform		$V_{DD} = 5 V$	-	4.5to 2.8	2.8 to 6.5		
tr	CLK rise time ⁽¹⁾			-		5000	ns	
tſ	CLK fall time ⁽¹⁾			-		5000	ns	

V_{DD} = 5 V, T_A = 25 °C, unless otherwise specified.

Notes:

⁽¹⁾ In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

Figure 3: LE/DM1 terminal

5 Timing diagrams

Table 9: Truth table						
CLOCK	LE/DM1	OE/DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO	
_ -	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15	
_ -	L	L	Dn + 1	No change	Dn - 14	
_ -	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13	
- _	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13	
- _	Х	Н	Dn + 3	OFF	Dn - 13	

OUTn = ON when Dn = H OUTn = OFF when Dn = L.

Figure 7: Timing diagram

1 Latch and output enable are level sensitive and ARE NOT synchronized with rising-or-falling edge of CLK signal.

2 When LE/DM1 terminal is low level, the latch circuits hold previous set of data.

3 When LE/DM1 terminal is high level, the latch circuits refresh new set of data from SDI chain.

4 When OE/DM2 terminal is at low level, the output terminals - Out0 to

Out15 respond to data in the latch circuits, either '1' for ON or '0' for OFF.

5 When OE/DM2 terminal is at high level, all output terminals will be switched OFF.

DocID16538 Rev 3

Figure 10: Outputs

6

Typical characteristics

Table 10:	Output	current-R-FXT	resistor

R- _{EXT} (Ω)	Output current (mA)			
976	20			
780	25			
652	30			
560	35			
488	40			
433	45			
389	50			
354	55			
325	60			
300	65			
278	70			
259	75			
241	80			
229	85			

Conditions:

temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 80 mA.

57

Table 11: ISET vs dropout voltage (Vdrop)

lout (mA)	Avg @ 3.0 V	Avg @ 5.0 V
3	19.33	22.66
5	36.67	40.33
10	77.33	80
20	158.67	157.33
50	406	406
80	692	668

Figure 13: IDD ON/OFF

DocID16538 Rev 3

7 Detection mode functionality

7.1 Phase one: "entering in detection mode"

From the "normal mode" condition the device can switch to the "error mode" by a logic sequence on the OE/DM2 and LE/DM1 pins as showed in the following table and diagram:

CLK	1°	2 °	3°	4 °	5°	
OE/DM2	н	L	н	н	н	
LE/DM1	L	L	L	Н	L	

After these five CLK cycles the device goes into the "error detection mode" and at the 6th rise front of CLK the SDI data are ready for the sampling.

7.2 Phase two: "error detection"

The 16 data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the microcontroller switches the $\overline{OE/DM2}$ to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

Figure 15: Detection diagram

The LEDs status will be detected at least in 1 microsecond and after this time the microcontroller sets OE/DM2 in HIGH state and the output data detection result will go to

the microprocessor via SDO.

Detection mode and normal mode use both the same format data. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode of operation. To re-detect the status the device must go back in normal mode and reentering in error detection mode.

DocID16538 Rev 3

7.3 Phase three: "resuming normal mode"

The sequence for reentering normal mode is shown in the following table:

Table 13. Resulting to normal mode timing diagram						
CLK	1°	2°	3°	4°	5°	
OE/DM2	Н	L	Н	Н	Н	
LE/DM1	L	L	L	L	L	

Table 13: Resuming to normal mode timing diagram

For proper device operation the "Entering in detection" sequence must be follow by a "resume mode" sequence, it is not possible to insert consecutive equal sequence.

7.4 Error detection conditions

 V_{DD} = 3.3 to 5 V temperature range -40 to 125 °C.

Table 14: Detection condition	ns
-------------------------------	----

Configuration	Detect mode	Detection results		
SW-1 or SW-3b	Open line or output short to GND detected	==> l _{ODEC} ≤ 0.5 x l _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V ₀ ≥ 2.4 V	No error detected	==> $V_0 \le 2.2 V$

Where: I_0 = the output current programmed by the R_{EXT}, I_{ODEC} = the detected output current in detection mode.

Detection mode functionality

Figure 17: Detection circuit

STP16DPS05

Figure 18: Error detection sequence

DocID16538 Rev 3

Typical schematic used to perform the error detection:

Using the follow formula is possible measure the lodec.

IODEC = (Vled-Vload) / Rload.

The tables below shows the I_{ODEC} average value at 3.3 V and 5.0 V of power supply voltage.

The IODEC is the current value recognized by the devices output open error detection.

Vdd (V)	lset (mA)	R _{ext} (Ω)	lout AVG (mA)
	5	4270	2.097
	10	2056	6.79
3.3	20	1006	10.46
	50	382	26.92
	80	251	35.03

Table 15: IODEC average value at 3.3 V

Table 16: IODEC average value at 5 V

Vdd (V)	lset (mA)	R _{ext} (Ω)	lout AVG (mA)
	5	4270	1.98
	10	2056	6.09
5	20	1006	9.67
	50	382	25.54
	80	251	38.9

7.5 Auto power-saving

The auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto powers-up the device as the first active data is latched.

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA

Ch1 (Yellow) = IDD, Ch2 (Blue) = SDI, Ch3 (Purple) = LE/DM1, Ch4 (Green) = CLK Idd consumption:

Idd (normal operation) = 5.15 mA

pldd (shutdown condition) = 163 μ A

Figure 21: Delay LE-OUT

After 16 clock cycles without data change, device will enter in Auto power save mode as expected. Delay TLE-OUT = 1.053 μs

Conditions:

Temp. = 25 °C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA Ch1 (Yellow) = CLK, Ch2 (Blue) = SDI, Ch3 (Purple) = LE/DM1, Ch4 (Green) = IOUT

When the device goes from auto power-saving to normal operating condition, the first output that switches ON shows the TON condition as seen in the plot above.

Temp. = 25°C, Vdd = 3.3 V, Vin = Vdd, VLed = 3.0 V, Iset = 20 mA Ch1 (Yellow) = IDD, Ch2 (Blue) = SDI, Ch3 (Purple) = LE/DM1, Ch4 (Green) = CLK

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

8.1 QSOP-24 package information

Package information

Table 17: QSOP-24 mechanical data					
Dim.		mm			
	Min.	Тур.	Max.		
A	1.54	1.62	1.73		
A1	0.10	0.15	0.25		
A2		1.47			
b	0.20		0.31		
С	0.17		0.254		
D	8.56	8.66	8.76		
E	5.80	6.00	6.20		
E1	3.80	3.91	4.01		
е		0.635			
L	0.40	0.635	0.89		
h	0.25	0.33	0.41		
<	0°		8°		

8.2 TSSOP24 package information

57

Package information

STP16DPS05

Table 18: TSSOP24 mechanical data			
Dim.	mm		
	Min.	Тур.	Max.
A			1.1
A1	0.05		0.15
A2		0.9	
b	0.19		0.30
с	0.09		0.20
D	7.7		7.9
E	4.3		4.5
е		0.65 BSC	
Н	6.25		6.5
К	0°		8°
L	0.50		0.70

8.3 SO-24 package information

Figure 25: SO-24 package outline

Package information

Table 19: SO-24 mechanical data			
Dim.	mm		
	Min.	Тур.	Max.
A			2.65
a1	0.1		0.2
a2			2.45
b	0.35		0.49
b1	0.23		0.32
С		0.5	
c1	45° (typ.)		
D	15.20		15.60
E	10.00		10.65
е		1.27	
e3		13.97	
F	7.40		7.60
L	0.50		1.27
S	°(max.) 8		

57

Package information

			Package informatio
Table 20: TSSOP24 exposed pad mechanical data			a
Dim.	mm		
	Min.	Тур.	Max.
A			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	7.70	7.80	7.90
D1	4.80	5.00	5.2
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
E2	3.00	3.20	3.40
е		0.65	
L	0.45	060	075
L1		1.00	
k	0°		8°
aaa			0.10

8.5 TSSOP24, TSSOP24 exposed pad and SO-24 packing information

Figure 27: TSSOP24, TSSOP24 exposed pad and SO-24 reel outline

Dim.	mm		
	Min.	Тур.	Max.
A		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	22.4
Ao	6.8	-	7
Во	8.2	-	8.4
Ко	1.7	-	1.9
Po	3.9	-	4.1
Р	11.9	-	12.1

Table 22: SO-24 tape and reel mechanical data

Package information

Dim.	mm		
	Min.	Тур.	Max.
А		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	30.4
Ao	10.8	-	11.0
Во	15.7	-	15.9
Ко	2.9	-	3.1
Po	3.9	-	4.1
Р	11.9	-	12.1

9 Revision history

Date	Revision	Changes
23-Oct-2009	1	First release
22-Jan-2010	2	Updated Table 5 on page 4
13-Apr-2017	3	Updated features in cover page, <i>Figure 5:</i> "SDO terminal", <i>Figure 8:</i> "Clock, serial-in, serial-out", <i>Figure 9:</i> "Clock, serial-in, latch, enable, outputs" and Section 8.1: "QSOP-24 package information". Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

