

BFP780

High linearity RF medium power transistor

Product description

The BFP780 is a single stage high linearity and high gain driver amplifier based on NPN silicon germanium technology.

Support

Feature list

- High maximum RF input power P_{RFin,max} = 20 dBm
- Minimum noise figure NF_{min} = 1.2 dB at 900 MHz, 5 V, 30 mA
- *OIP*₃ = 34.5 dBm at 900 MHz, 5 V, 90 mA
- *OP*_{1dB} = 23 dBm at 900 MHz, 5 V, 90 mA

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

- Commercial and industrial wireless infrastructure
- ISM band medium power amplifiers and drivers
- Automated test equipment
- UHF television, CATV and DBS

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin conf	iguration	า		Marking	Pieces / Reel
BFP780 / BFP780H6327XTSA1	SOT343	1 = B	2 = E	3 = C	4 = E	R1s	3000

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Table of contents

1

2

3

4 4.1 4.2 4.3 4.4

5

Table of contents

Product description	1
Feature list	1
Product validation	1
Potential applications	1
Device information	1
Table of contents	2
Absolute maximum ratings	
Recommended operating conditions	
Thermal characteristics	5
Electrical performance in test fixture	6
DC parameter table	6
AC parameter tables	6
Characteristic DC diagrams	9
Characteristic AC diagrams	
Package information SOT343	18
Revision history	
Disclaimer	20

Absolute maximum ratings

1 Absolute maximum ratings

Table 2Absolute maximum ratings at $T_A = 25$ °C (unless otherwise specified)

Parameter	Symbol Values		alues	Unit	Note or test condition	
		Min.	Max.			
Collector emitter voltage	V _{CE}	-	6.1 5.1	V	$T_A = 25 \text{ °C}$ $T_A = -40 \text{ °C}$	
Collector base voltage	V _{CB}	-	15		-	
Instantaneous total collector current	i _C	-	240	mA	DC + RF swing	
DC collector current	I _C		120		-	
DC base current	I _B	-1	5			
RF input power	P _{RFin}	-	20	dBm	In- and output matched	
Dissipated power	P _{diss}		600	mW	T _S ≤ 93 °C ¹⁾ , regard derating curve in <i>Figure</i>	
Junction temperature	TJ		150	°C	-	
Operating case temperature	T _A	-40	105 ²⁾			
Storage temperature	T _{Stg}	-55	150			

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component.

² At the same time regard $T_{J,max}$.

¹ $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the PCB.

Recommended operating conditions

2

Recommended operating conditions

The following table shows examples of recommended operating conditions. As long as maximum ratings are regarded, operation outside these conditions is permitted, but it may increases failure rate and reduces lifetime. For further information refer to the quality report available on the BFP780 product page.

Table 3Recommended operating conditions

Operating mode	Ambient tempera- ture ¹⁾	Collector current	DC power ²⁾	RF output power ³⁾	Efficiency ⁴⁾	Dissipated power ⁵⁾	Thermal resistance of PCB ⁶⁾	Junction tempera- ture ⁷⁾
	T _A [°C]	/ _C [mA]	P _{DC} [mW]	P _{RFout} [mW] (dBm)	η [%]	P _{diss} [mW]	R _{thSA} [K/W]	Т _Ј [°С]
Compres- sion	55	90	450	200 (23)	45	250	120	110
Final stage	55	90	450	115 (20.5)	25	340	70	110
High T _A	85	50	250	75 (19)	30	175	35	110
Maximum T _A	105	20	100	45 (16.5)	45	55	35	110
Linear	55	50	250	20 (13)	8	230	120	110
Very linear	55	90	450	23 (13.5)	5	430	35	110

- ¹ Is the operating case temperature respectively of the heatsink.
- ² $P_{\rm DC} = V_{\rm CE}^* I_{\rm C}$ with $V_{\rm CE} = 5$ V.
- ³ RF power delivered to the load, $P_{\text{RFout}} = \eta * P_{\text{DC}}$.
- ⁴ Efficiency of the conversion from DC power to RF power, $\eta = P_{\text{RFout}} / P_{\text{DC}}$ (collector efficiency).
- ⁵ $P_{diss} = P_{DC} P_{RFout}$. The RF output power P_{RFout} delivered to the load reduces the power P_{diss} to be dissipated by the device. This means a good output match is recommended.
- ⁶ R_{thSA} is the thermal resistance of the PCB including heat sink, that is between the soldering point S and the ambient A. Regard the impact of R_{thSA} on the junction temperature T_{J} , see below. The thermal design of the PCB, respectively R_{thSA} , has to be adjusted to the intended operating mode.

⁷
$$T_{\rm J} = T_{\rm A} + P_{\rm diss} * R_{\rm thJA}$$

 $R_{\rm thJA} = R_{\rm thJS} + R_{\rm thSA}$.

 R_{thJA} is the thermal resistance between the transistor junction J and the ambient A.

 R_{thJS} is the combined thermal resistance of die and package, which is 95 K/W for BFP780, see *Chapter* 3.

Thermal characteristics

3

Thermal characteristics

Table 4 **Thermal resistance** Parameter Symbol Values Unit Note or test condition Тур. Min. Max. Junction - soldering point 95 K/W _ R_{thJS} 700 600 500 P_{diss,max} [mW] 400 300 200 100 0 0 25 50 100 75 125 150 T_S [°C]

Figure 1 Absolute maximum power dissipation $P_{diss,max} = f(T_s)$

Note: In the horizontal part of the derating curve the maximum power dissipation is given by $P_{diss,max} \approx V_{CE,max} * I_{C,max}$. In this part, the junction temperature T_J is lower than $T_{J,max}$. In the declining slope, it is $T_J = T_{J,max}$. $P_{diss,max}$ has to be reduced according to the curve in order not to exceed $T_{J,max}$. It is $T_{J,max} = T_S + P_{diss,max} * R_{thJS}$.

Electrical performance in test fixture

4 Electrical performance in test fixture

4.1 DC parameter table

Table 5DC characteristics at $T_A = 25$ °C

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	V _{(BR)CEO}	6.1	6.6	-	V	I _C = 1 mA, open base
Collector emitter leakage current	I _{CES}	-	1 0.1	40 ¹⁾ 3 ¹⁾	nA μA	$V_{CE} = 8 V, V_{BE} = 0 V,$ $V_{CE} = 18 V, V_{BE} = 0 V,$ E-B short circuited
Collector base leakage current	I _{CBO}		1	40 1)	nA	$V_{CB} = 8 \text{ V}, I_E = 0,$ open emitter
Emitter base leakage current	I _{EBO}		-	10 1)	μΑ	$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0, open collector
DC current gain	h _{FE}	85	160	230		$V_{CE} = 5 \text{ V}, I_C = 90 \text{ mA},$ pulse measured ²⁾

4.2 AC parameter tables

Table 6General AC characteristics at $T_A = 25 \degree C$

Parameter	Symbol	Symbol Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Transition frequency	f _T	-	20	-	GHz	V _{CE} = 5 V, I _C = 90 mA
Collector base capacitance	C _{CB}		0.37		pF	$V_{CB} = 5 V, V_{BE} = 0 V,$ f = 1 MHz, emitter grounded
Collector emitter capacitance	C _{CE}	_	1.4			$V_{CE} = 5 V, V_{BE} = 0 V,$ f = 1 MHz, base grounded
Emitter base capacitance	C _{EB}		3.3			$V_{\text{EB}} = 0.5 \text{ V}, V_{\text{CB}} = 0 \text{ V},$ f = 1 MHz, collector grounded

¹ Accuracy is not limited by the device but by the cycle time of the 100% test.

² Test duration 14 ms, duty cycle 46%. Regard that the current gain h_{FE} depends on the junction temperature T_J and T_J amongst others from the thermal resistance R_{thSA} of the PCB, see notes on **Table 3**. Hence the h_{FE} specified in this data sheet must not be the same as in the application. It is recommended to apply circuit design techniques to make the collector current I_C independent on the h_{FE} production variation and temperature effects.

Electrical performance in test fixture

Figure 2 BFP780 testing circuit

Table 7AC characteristics, $V_{CE} = 5 V$, f = 900 MHz

Parameter	Symbol Values				Unit	Note or test condition	
		Min.	Тур.	Max.	1		
Power gain		-		-	dB		
Maximum power gain	G _{ms}		27			I _C = 90 mA	
Transducer gain	$ S_{21} ^2$		21.5				
Minimum noise figure							
Minimum noise figure	NF _{min}		1.2			/ _C = 30 mA	
Linearity					dBm	$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$	
1 dB compression point at output	OP _{1dB}		23			$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$ $I_{\rm C} = 90 \text{ mA}$	
3rd order intercept point at output	OIP ₃		34.5				

Table 8

AC characteristics, V_{CE} = 5 V, f = 1.8 GHz

Parameter	Symbol Values			Unit	Note or test condition	
		Min.	Тур.	Max.		
Power gain		-		-	dB	
Maximum power gain	G _{ms}		22			I _C = 90 mA
Transducer gain	$ S_{21} ^2$		15			
Minimum noise figure						
Minimum noise figure	NF _{min}		1.4			/ _C = 30 mA
Linearity				-	dBm	$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$
1 dB compression point at output	OP _{1dB}		22			$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$ $I_{\rm C} = 90 \text{ mA}$
3rd order intercept point at output	OIP ₃		34			

Electrical performance in test fixture

Table 9AC characteristics, $V_{CE} = 5 V, f = 2.6 GHz$

Parameter	Symbol Values			Unit	Note or test condition	
		Min.	Тур.	Max.		
Power gain		-		-	dB	
Maximum power gain	G _{ma}		18			I _C = 90 mA
Transducer gain	$ S_{21} ^2$		12			
Minimum noise figure						
Minimum noise figure	NF _{min}		1.7			<i>I</i> _C = 30 mA
Linearity					dBm	$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$
1 dB compression point at output	OP _{1dB}		22			$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$ $I_{\rm C} = 90 \text{ mA}$
3rd order intercept point at output	OIP ₃		34			

Table 10AC characteristics, $V_{CE} = 5 V, f = 3.5 GHz$

Parameter	Symbol Values		Unit	Note or test condition		
		Min.	Тур.	Max.		
Power gain		-		-	dB	
Maximum power gain	G _{ma}		15			<i>I</i> _C = 90 mA
Transducer gain	S ₂₁ ²		8.5			
Minimum noise figure]				
Minimum noise figure	NF _{min}		2.4			<i>I</i> _C = 30 mA
Linearity		1			dBm	$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$
1 dB compression point at output	OP _{1dB}		22			$Z_{\rm L} = Z_{\rm L,opt}(P_{\rm out}),$ $I_{\rm C} = 90 \text{ mA}$
3rd order intercept point at output	OIP ₃		33.5			

Electrical performance in test fixture

Note: Refer to absolute maximum ratings for I_C, V_{CE} and P_{diss}.

DC Current gain $h_{FE} = f(I_C), V_{CE} = 5 V$

Electrical performance in test fixture

Figure 5 Collector emitter breakdown voltage $V_{(BR)CER} = f(R_{BE})$

Note: The above figure shows the collector-emitter breakdown voltage $V_{(BR)CER}$ with a resistor R_{BE} between base and emitter. Only for very high R_{BE} values ("open base") the breakdown voltage $V_{(BR)CER}$ is as low as $V_{(BR)CEO}$ (here 6.6 V). With decreasing R_{BE} values $V_{(BR)CER}$ increases, e.g. at $R_{BE} = 10 \ k\Omega$ to $V_{(BR)CEO} =$ 10 V. In the application the biasing base resistance together with block capacitors take over the function of R_{BE} and allows the RF voltage amplitude to swing up to voltages much higher than $V_{(BR)CEO}$, without clipping. Due to this effect the transistor can be biased at $V_{CE} = 5 \ V$ and still high RF output powers achieved, see the OP_{1dB} values reported in **Chapter 4.2**.

Transition frequency $f_T = f(I_C)$, $V_{CE} = parameter$

Collector base capacitance $C_{CB} = f(I_C), f = 1 \text{ GHz}, V_{CB} = parameter$

Electrical performance in test fixture

Figure 12 Output reflection coefficient $S_{22} = f(f)$, $V_{CE} = 5 V$, $I_C =$ parameter

Noise figure $NF_{min} = f(I_C)$, $V_{CE} = 5 V$, $Z_S = Z_{S,opt}$, f = parameter

Electrical performance in test fixture

 P_{out} , Gain, I_{C} , PAE = f(P_{in}), V_{CE} = 5 V, f = 900 MHz, R_{1} = 270 Ω , R_{2} = 8 k Ω , Z_{L} = $Z_{L,opt}$ (P_{out})

Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves. $T_A = 25$ °C.

Package information SOT343

5 Package information SOT343

Figure 20 Package outline

Figure 21 Foot print

Figure 22 Marking layout example

Figure 23 Tape dimensions

Revision history

Revision history

Document version	Date of release	Description of changes
4.0	2018-09-26	New datasheet layout.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-ebx1468299694130

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury