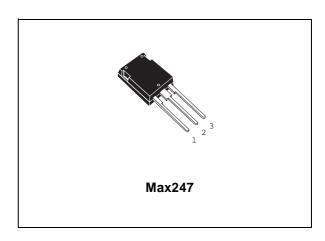
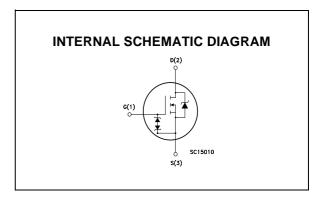


STY60NM60

N-CHANNEL 600V - 0.050Ω - 60A Max247 Zener-Protected MDmesh™Power MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STY60NM60	600V	< 0.055Ω	60 A


- TYPICAL $R_{DS}(on) = 0.050\Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- IMPROVED ESD CAPABILITY
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL
- INDUSTRY'S LOWEST ON-RESISTANCE



The MDmesh™ is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.

The MDmesh™ family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

ORDERING INFORMATION

SALES TYPE	PE MARKING PACKAGE		PACKAGING
STY60NM60	Y60NM60	Max247	TUBE

July 2003 1/8

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage (V _{GS} = 0)	600	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	600	V
V _{GS}	Gate- source Voltage	±30	V
I _D	Drain Current (continuous) at T _C = 25°C	60	Α
ID	Drain Current (continuous) at T _C = 100°C	37.8	Α
I _{DM} (•)	Drain Current (pulsed)	240	Α
P _{TOT}	Total Dissipation at T _C = 25°C	560	W
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=15KΩ)	6	KV
	Derating Factor	4.5	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	15	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

^(•)Pulse width limited by safe operating area

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case	Max	0.22	°C/W
Rthj-amb	Thermal Resistance Junction-ambient	Max	30	°C/W
T _I	Maximum Lead Temperature For Soldering	Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	30	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 35$ V)	1.4	J

GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV_{GSO}	Gate-Source Breakdown Voltage	Igs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

⁽¹⁾ $I_{SD} \leq 60A$, $di/dt \leq 400 A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$.

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25~^{\circ}C$ UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			10	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125°C			100	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±10	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 30 A		0.050	0.055	Ω

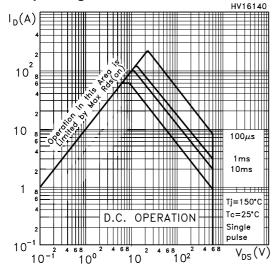
DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 30 \text{ A}$		35		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0$		7300 2000 40		pF pF pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.8		Ω

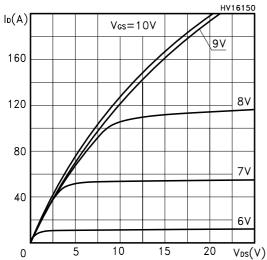
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{DD} = 300 \text{ V}, I_D = 30 \text{ A}$ $R_G = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (see test circuit, Figure 3)		55 95		ns ns
$egin{array}{c} Q_g \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 470 \text{ V}, I_D = 60 \text{ A}, V_{GS} = 10 \text{ V}$		178 44.5 95	266	nC nC nC

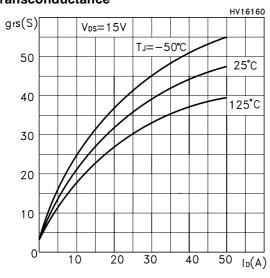
SWITCHING OFF

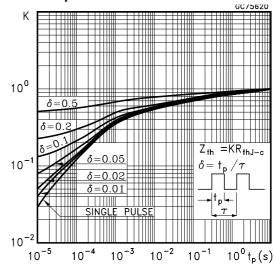

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 400 \text{ V}, I_{D} = 60 \text{ A},$		130		ns
t _f	Fall Time	$R_G = 4.7\Omega, V_{GS} = 10 \text{ V}$		76		ns
t _c	Cross-over Time	(see test circuit, Figure 5)		105		ns

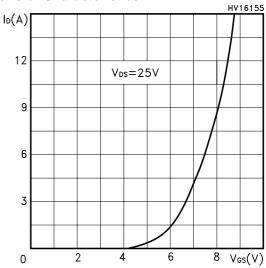
SOURCE DRAIN DIODE

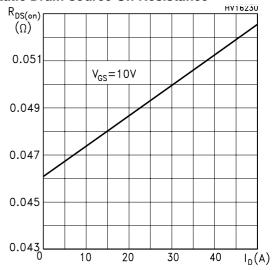

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				60 240	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 60 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 60 A, di/dt = 100 A/ μ s, V_{DD} = 30 V, T_j = 150°C (see test circuit, Figure 5)		600 14 48		ns µC A

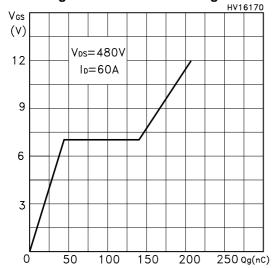
Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

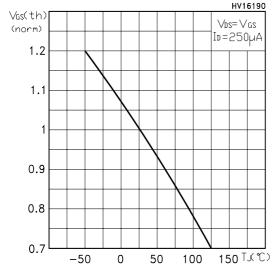

Safe Operating Area

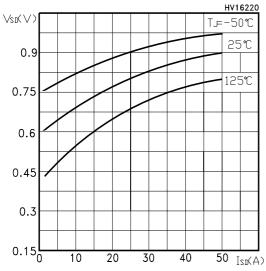

Output Characteristics

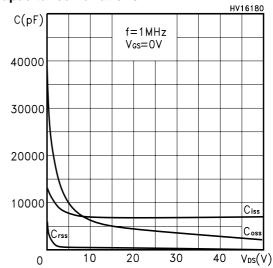

Transconductance

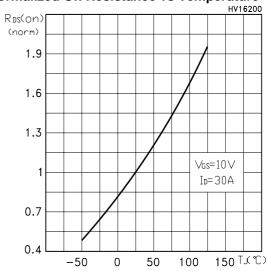

Thermal Impedance

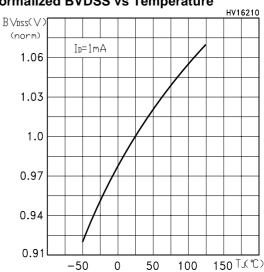

Transfer Characteristics


Static Drain-source On Resistance


Gate Charge vs Gate-source Voltage


Normalized Gate Threshold Voltage vs Temp.


Source-drain Diode Forward Characteristics


Capacitance Variations

Normalized On Resistance vs Temperature

Normalized BVDSS vs Temperature

47/₈

Fig. 1: Unclamped Inductive Load Test Circuit

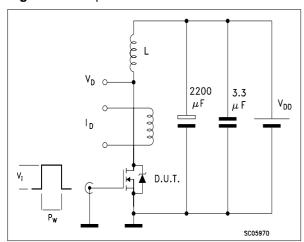


Fig. 3: Switching Times Test Circuit For Resistive Load

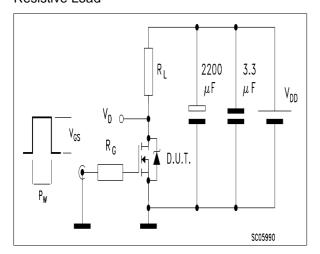


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

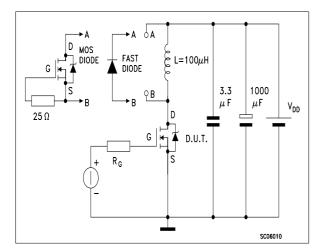


Fig. 2: Unclamped Inductive Waveform

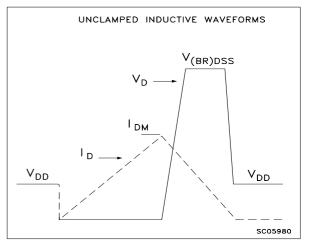
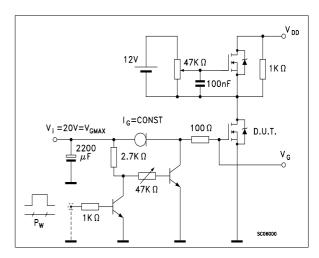
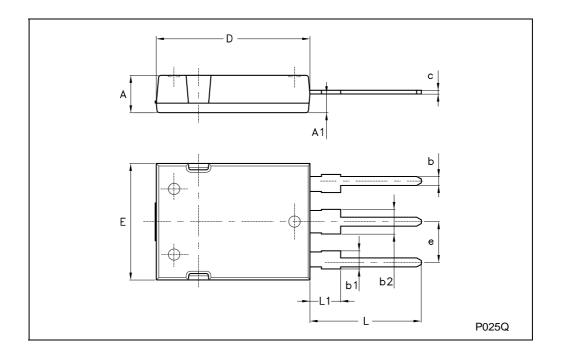




Fig. 4: Gate Charge test Circuit

Max247 MECHANICAL DATA

DIM.		mm			inch		
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	4.70		5.30				
A1	2.20		2.60				
b	1.00		1.40				
b1	2.00		2.40				
b2	3.00		3.40				
С	0.40		0.80				
D	19.70		20.30				
е	5.35		5.55				
Е	15.30		15.90				
L	14.20		15.20				
L1	3.70	·	4.30				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

477.