

STD10N60DM2

N-channel 600 V, 0.440 Ω typ., 8 A MDmesh™ DM2 Power MOSFET in a DPAK package

Datasheet - production data

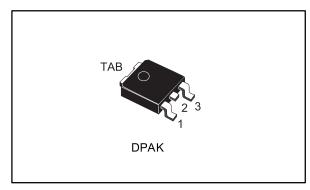
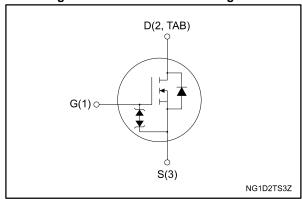



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax} .	R _{DS(on)} max.	I _D	P _{TOT}
STD10N60DM2	650 V	0.530 Ω	8 A	109 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing	
STD10N60DM2	10N60DM2	DPAK	Tape and reel	

STD10N60DM2 Contents

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) packing information	11
5	Revisio	n history	13

STD10N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
l-	Drain current (continuous) at T _{case} = 25 °C	8	۸
l _D	Drain current (continuous) at T _{case} = 100 °C	5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	32	Α
P _{TOT}	Total dissipation at T _{case} = 25 °C	109	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽³⁾	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		V/IIS
T _{stg}	Storage temperature range		°C
Tj	T _j Operating junction temperature range		

Notes:

Table 3: Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.14	900
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-ambient	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol Parameter		Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	2	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	300	mJ

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 8$ A, di/dt=900 A/ μ s; V_{DS} peak < $V_{(BR)DSS}, V_{DD}$ = 400 V

 $^{^{(3)}}$ V_{DS} ≤ 480 V.

⁽¹⁾When mounted on 1 inch² FR-4 board, 2oz Cu.

 $^{^{(1)}}$ pulse width limited by T_{jmax}

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STD10N60DM2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1.5	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS} Gate-body leakage current		V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)} Static drain-source on- resistance		V _{GS} = 10 V, I _D = 4 A		0.440	0.530	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	529	1	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	28	ı	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	0.72	ı	۲.
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	47	1	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	6.5	ı	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 8 \text{ A},$	-	15	-	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	3.7	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	8	-	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 4 A	-	11	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	5	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	28	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	1	11.5	1	

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		ı		8	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		1		32	Α
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 8 A	ı		1.6	٧
t _{rr}	Reverse recovery time	$I_{SD} = 8 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	ı	90		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	ı	225		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	1	5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	190		ns
Qrr	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 16: "Test circuit for	-	684		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	7.2		А

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS} = \pm 250 \mu\text{A}, I_{D} = 0 \text{A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾ Limited by maximum junction temperature.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

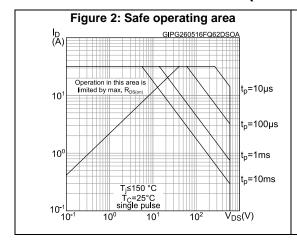
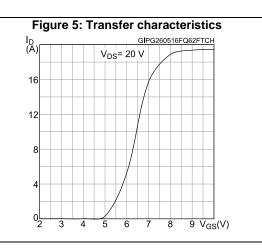
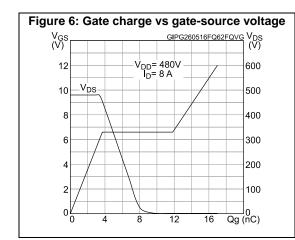
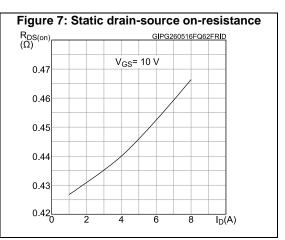





Figure 3: Thermal impedance $K = \frac{GC20460}{10^{-1}}$ $\delta = 0.5$ $\delta = 0.2$ $\delta = 0.01$ $\delta = 0.01$ $\delta = 0.01$ Single pulse 10^{-3} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} $t_p(s)$

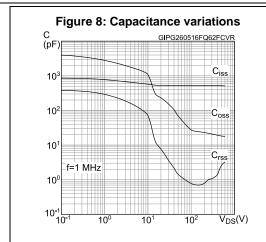


Figure 9: Normalized gate threshold voltage vs temperature

V_{GS(th)}
(norm.)

1.1

1.0

0.9

0.8

0.7

0.6

-75

-25

25

75

125

T_J(°C)

Figure 10: Normalized on-resistance vs temperature

RDS(on) GIPG260516FQ62FRON (norm.)

2.2

1.8

VGS=10 V

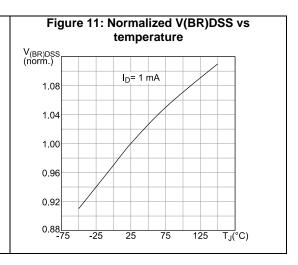
1.4

1.0

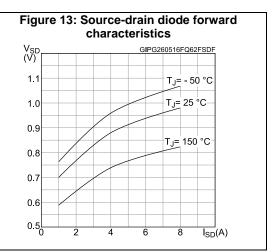
0.6

0.2

-75


-25

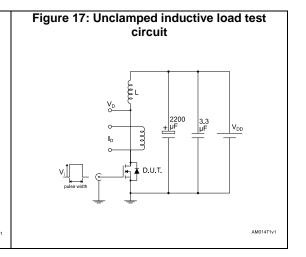

25

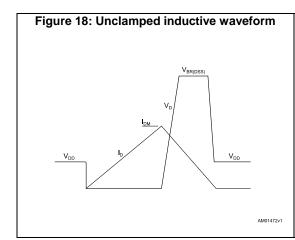

75

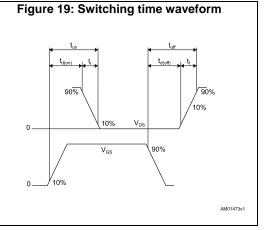
125

TJ(°C)

Test circuits STD10N60DM2


3 Test circuits


Figure 14: Test circuit for resistive load switching times


Figure 15: Test circuit for gate charge behavior

12 V 47 kΩ 100 nF 1 kΩ

Vos 16 CONST 100 nF 100 nF

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A package information

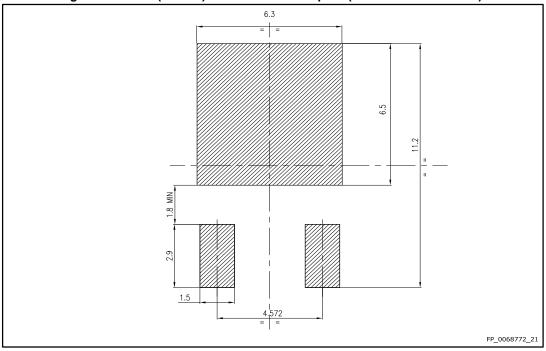

THERMAL PAD <u>c2</u> L2 **b**(2x) R SEATING PLANE (L1) 0,25 0068772_A_21

Figure 20: DPAK (TO-252) type A package outline

Table 10: DPAK (TO-252) type A mechanical data

D		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	4.60	4.70	4.80
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 21: DPAK (TO-252) recommended footprint (dimensions are in mm)

STD10N60DM2 Package information

4.2 DPAK (TO-252) packing information

Figure 22: DPAK (TO-252) tape outline

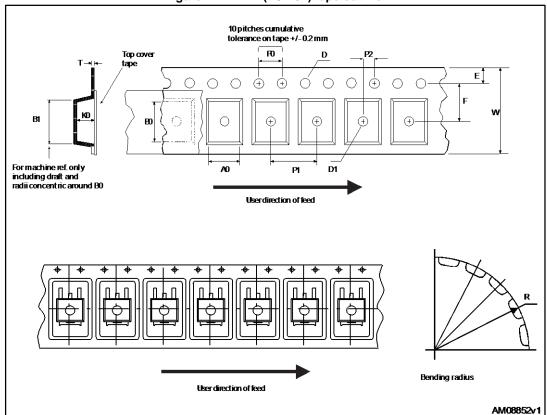


Figure 23: DPAK (TO-252) reel outline

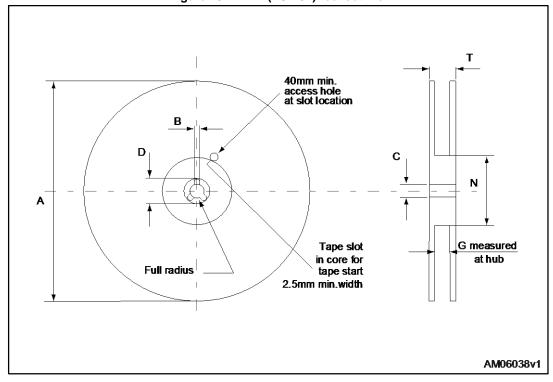


Table 11: DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2500		2500
P1	7.9	8.1	Bulk qty. 2500		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD10N60DM2 Revision history

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
17-Jun-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

