

BU931P

Automotive-grade high voltage ignition coil driver NPN power Darlington transistor

Datasheet - production data

Features

- AEC-Q101 qualified
- Very rugged Bipolar technology
- High operating junction temperature

Applications

High ruggedness electronic ignitions

Description

This is a high voltage power Darlington transistor developed using multi-epitaxial planar technology. It has been properly designed for automotive environment as electronic ignition power actuators.

Figure 1: Internal schematic diagram

Table 1: Device summary

Order code	Marking	Package	Packing
BU931P	BU931P BU931P TO-247		Tube

DocID031166 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	rcuits	7
4	Packag	e information	8
	4.1	TO-247 package information	8
5	Revisio	on history	10

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{CES}	Collector-emitter voltage (V _{BE} = 0)	500	V	
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V	
Vebo	Emitter-base voltage ($I_c = 0$)	5	V	
lc	Collector current	15	А	
I _{CM}	Collector peak current	30	А	
lв	Base current	1	А	
Івм	Base peak current	5	А	
Ртот	Total dissipation at Tc = 25 °C	135	W	
T _{stg}	Storage temperature range		°C	
Tj	Operating junction temperature range	-65 to 175 °C		

Table 3: Thermal data

Symbol	Parameter Value		Unit
RthJC	Thermal resistance junction-case	1.1	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
		V _{BE} = 0 V, V _{CE} = 500 V		-	100	μA
ICES	Collector cut-off current	$V_{BE} = 0 V, V_{CE} = 500 V,$ T _c = 125 °C ⁽¹⁾		-	0.5	mA
		$I_B = 0 A, V_{CE} = 450 V$		-	100	μA
ICEO	Collector cut-off current	$I_B = 0 \text{ A}, V_{CE} = 450 \text{ V},$ $T_C = 125 \text{ °C} (1)$		-	0.5	mA
I _{EBO}	Emitter cut-off current	Ic= 0 A, V _{EB} = 5 V		-	20	mA
V _{CEO(sus)} ⁽²⁾	Collector-emitter sustaining voltage	I _B = 0 A, I _C = 100 mA	400	-		V
	Collector-emitter saturation voltage	$I_{C} = 7 \text{ A}, I_{B} = 70 \text{ mA}$		-	1.6	V
V _{CE(sat)} ⁽²⁾		I _C = 8 A, I _B = 100 mA		-	1.8	V
		$I_{C} = 10 \text{ A}, I_{B} = 250 \text{ mA}$		-	1.8	V
		$I_{\rm C} = 7$ A, $I_{\rm B} = 70$ mA		-	2.2	V
V _{BE(sat)} ⁽²⁾	Base-emitter saturation voltage	I _C = 8 A, I _B = 100 mA		-	2.4	V
	vollago	$I_{C} = 10 \text{ A}, I_{B} = 250 \text{ mA}$		-	2.5	V
h _{FE} ⁽²⁾	DC current gain	Ic = 5 A, Vce = 10 V	300	-		
VF	Diode forward voltage	I _F = 10 A		-	2.5	V
	Functional test	V _{CC} = 24 V, L = 7 mH, V _{clamp} = 400 V (see <i>Figure 10: "Functional test</i> <i>circuit"</i>)	8	-		A

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{(2)}\mathsf{Pulse}$ test: pulse duration \leq 300 µs, duty cycle \leq 2 %.

Table 5: Inductive load switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ts	Storage time	$V_{BE}=0, V_{CC} = 12 V,$	-	15	-	μs
tr	Fall time	$V_{clamp} = 300 V, L = 7 mH,$ $R_{BE} = 47 \Omega, I_C = 7 A, I_B = 70 mA$ (see Figure 12: "Switching time test circuit")	-	0.5	-	μs

57

DocID031166 Rev 1

5/11

Electrical characteristics

BU931P

6/11

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

DocID031166 Rev 1

Package information

			Package information
	Table 6: TO-247 pac	kage mechanical dat	а
Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Revision history 5

Table 1	7:	Document	revision	historv
labio	•••	Doodinone		

Date	Revision	Changes
23-Oct-2017	1	Initial release. Part number previously included in datasheet DocID1004.

BU931P

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

