SLLIMM - 2nd series IPM, 3-phase inverter, 15 A, 600 V, short-circuit rugged IGBT SDIP2F-26L type L2 # STPOWER #### Product status link STGIF10CH60S-L | Product summary | | | | |---------------------------|--------------------|--|--| | Order code STGIF10CH60S-L | | | | | Marking | GIF10CH60S-L | | | | Package | SDIP2F-26L type L2 | | | | Packing Tube | | | | #### **Features** - IPM 15 A, 600 V, 3-phase IGBT inverter bridge including 2 control ICs for gate driving and freewheeling diodes - 3.3 V, 5 V TTL/CMOS inputs with hysteresis - Internal bootstrap diode - · Undervoltage lockout of gate drivers - · Smart shutdown function - · Short-circuit protection - · Shutdown input/fault output - Separate open emitter outputs - · Built-in temperature sensor - · Comparator for fault protection - Short-circuit rugged TFS IGBT - · Very fast, soft recovery diodes - Fully isolated package - Isolation rating of 1600 Vrms/min. - UL recognition: UL 1557, file E81734 #### **Applications** - 3-phase inverters for motor drives - Washing machines - Dryer - · Industrial fans - Pumps #### **Description** This second series of SLLIMM (small low-loss intelligent molded module) provides a compact, high-performance AC motor drive in a simple, rugged design. It combines new ST proprietary control ICs (one LS and one HS driver) with an improved short-circuit rugged trench gate field-stop (TFS) IGBT, making it ideal for motor drives operating up to 20 kHz in hard-switching circuitries. ## Internal schematic diagram and pin configuration NC(1) (26)NC VbootU(2) (25)NC VbootV(3) VbootW(4) (24)P 本 HinU(5) (23)U HinV(6) HinW(7) (22)V VccH(8) (21)W GND(9) H-side LinU(10) LinV(11) LinW(12) (20)NU VccL(13) SD/OD(14) (19)NV Cin(15) (18)NW GND(16) TSO(17) L-side Figure 1. Internal schematic diagram and pin configuration AMG171020161037SA DS10548 - Rev 2 page 2/23 Table 1. Pin description | Pin | Symbol | Description | |-----|--------|--| | 1 | NC | - | | 2 | VBOOTu | Bootstrap voltage for U phase | | 3 | VBOOTv | Bootstrap voltage for V phase | | 4 | VBOOTw | Bootstrap voltage for W phase | | 5 | HINu | High-side logic input for U phase | | 6 | HINV | High-side logic input for V phase | | 7 | HINw | High-side logic input for W phase | | 8 | VCCH | High-side low voltage power supply | | 9 | GND | Ground | | 10 | LINu | Low-side logic input for U phase | | 11 | LINv | Low-side logic input for V phase | | 12 | LINw | Low-side logic input for W phase | | 13 | VCCL | Low-side low voltage power supply | | 14 | SD/OD | Shutdown logic input (active low) / open-drain (comparator output) | | 15 | CIN | Comparator input | | 16 | GND | Ground | | 17 | TSO | Temperature sensor output | | 18 | NW | Negative DC input for W phase | | 19 | NV | Negative DC input for V phase | | 20 | NU | Negative DC input for U phase | | 21 | W | W phase output | | 22 | V | V phase output | | 23 | U | U phase output | | 24 | Р | Positive DC input | | 25 | NC | - | | 26 | NC | - | DS10548 - Rev 2 page 3/23 # 2 Absolute maximum ratings T_J = 25 °C unless otherwise noted. Table 2. Inverter part | Symbol | Parameter | Value | Unit | |------------------------|---|-------|------| | V_{PN} | Supply voltage between P -N _U , -N _V , -N _W | 450 | V | | V _{PN(surge)} | Supply voltage (surge) between P -N _U , -N _V , -N _W | 500 | V | | V _{CES} | Collector-emitter voltage each IGBT | 600 | V | | | Continuous collector current each IGBT (T _C = 25 °C) | 15 | | | ± I _C | Continuous collector current each IGBT (T _C = 80 °C) | 10 | _ A | | ± I _{CP} | Peak collector current each IGBT (less than 1 ms) | 30 | Α | | P _{TOT} | P _{TOT} Total power dissipation at T _C = 25 °C each IGBT | | W | | t _{scw} | Short circuit withstand time, V_{CE} = 300 V, T_{J} = 125 °C, V_{CC} = V_{boot} = 15 V, V_{IN} = 0 to 5 V | | μs | Table 3. Control part | Symbol | Parameter | Min. | Max. | Unit | |--------------------|---|------------------------|-------------------------|------| | V _{CC} | Supply voltage applied between V_{CCH} -GND, V_{CCL} -GND | - 0.3 | 20 | V | | V _{BOOT} | Bootstrap voltage | - 0.3 | 619 | V | | V _{OUT} | Output voltage between U, V, W and GND | V _{BOOT} - 21 | V _{BOOT} + 0.3 | V | | V _{CIN} | Comparator input voltage | -0.3 | 20 | V | | V _{IN} | Logic input voltage applied between HINx, LINx and GND | -0.3 | 15 | V | | V _{SD/OD} | Open drain voltage | -0.3 | 7 | V | | I _{SD/OD} | Open drain sink current | | 10 | mA | | V _{TSO} | Temperature sensor output voltage | -0.3 | 5.5 | V | | I _{TSO} | Temperature sensor output current | | 7 | mA | Table 4. Total system | Symbol | Parameter | Value | Unit | |------------------|---|------------|------| | V _{ISO} | Isolation withstand voltage applied between each pin and heat sink plate (AC voltage, t = 60 s) | 1600 | Vrms | | TJ | Power chips operating junction temperature range | -40 to 175 | °C | | T _C | Module operation case temperature range | -40 to 125 | °C | DS10548 - Rev 2 page 4/23 ## 2.1 Thermal data Table 5. Thermal data | Symbol | Parameter | Value | Unit | |------------|---|-------|------| | R_{thJC} | Thermal resistance, junction-to-case single IGBT | 4.6 | °C/W | | NthJC | Thermal resistance, junction-to-case single diode | 5.5 | C/VV | DS10548 - Rev 2 page 5/23 #### 3 Electrical characteristics T_J = 25 °C unless otherwise specified. #### 3.1 Inverter part Table 6. Static | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|--------------------------------------|--|-------|------|------|------| | I _{CES} | Collector-cut off current | V _{CE} = 600 V, V _{CC} = V _{boot} = 15 V | - | | 100 | μA | | Vancou | Collector-emitter saturation voltage | $V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_{C} = 10 \text{ A}$ | - 1.5 | 1.95 | V | | | V _{CE(sat)} | | $V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_{C} = 15 \text{ A}$ | - | 1.65 | | V | | V _F | Diode forward voltage | $V_{IN}^{(1)} = 0$, $I_C = 10 \text{ A}$ | - | 1.42 | 2.0 | V | | | | $V_{IN}^{(1)} = 0$, $I_C = 15 A$ | - | 1.54 | | V | ^{1.} Applied between HINx, LINx and GND for x = U, V, W. Table 7. Inductive load switching time and energy | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------------------------|---------------------------|--|------|------|------|------| | t _{on} ⁽¹⁾ | Turn-on time | | - | 287 | - | | | t _{c(on)} ⁽¹⁾ | Cross-over time on | | - | 146 | - | | | t _{off} ⁽¹⁾ | Turn-off time | | - | 370 | - | ns | | t _{c(off)} ⁽¹⁾ | Cross-over time off | V _{DD} = 300 V, V _{CC} = V _{boot} = 15 V, | - | 105 | - | | | t _{rr} | Reverse recovery time | $V_{IN}^{(2)} = 0 \text{ to 5 V, I}_{C} = 10 \text{ A}$ | - | 270 | - | | | E _{on} | Turn-on switching energy | | - | 281 | - | | | E _{off} | Turn-off switching energy | | - | 121 | - | μJ | | Err | Reverse recovery energy | | - | 23 | - | | | t _{on} (1) | Turn-on time | | - | 315 | - | | | t _{c(on)} ⁽¹⁾ | Cross-over time on | | - | 175 | - | | | t _{off} ⁽¹⁾ | Turn-off time | | - | 346 | - | ns | | t _{c(off)} ⁽¹⁾ | Cross-over time off | V _{DD} = 300 V, V _{CC} = V _{boot} = 15 V, | - | 89 | - | | | t _{rr} | Reverse recovery time | V _{IN} ⁽²⁾ = 0 to 5 V, I _C = 15 A | - | 280 | - | | | E _{on} | Turn-on switching energy | | - | 459 | - | | | E _{off} | Turn-off switching energy | | - | 175 | - | μJ | | E _{rr} | Reverse recovery energy | | - | 34 | - | | ^{1.} t_{on} and t_{off} include the propagation delay time of the internal drive. $t_{C(on)}$ and $t_{C(off)}$ are the switching times of the IGBT itself under the internally given gate driving condition. DS10548 - Rev 2 page 6/23 ^{2.} Applied between HINx, LINx and GND for x = U, V, W. Figure 2. Switching time test circuit Figure 3. Switching time definition DS10548 - Rev 2 page 7/23 ## 3.2 Control/protection parts Table 8. High- and low-side drivers | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |--------------------------|---|---|------|--------|------|------| | V _{il} | Low logic level voltage | | | | 0.8 | V | | V _{ih} | High logic level voltage | | 2 | | | V | | I _{INh} | IN logic "1" input bias current | IN _x = 15 V | 80 | 150 | 200 | μA | | I _{INI} | IN logic "0" input bias current | IN _x = 0 V | | | 1 | μA | | | | High-side | | | | | | V _{CC_hys} | V _{CC} UV hysteresis | | 1.2 | 1.4 | 1.7 | V | | V _{CCH_th(on)} | V _{CCH} UV turn-on threshold | | 11 | 11.5 | 12 | V | | V _{CCH_th(off)} | V _{CCH} UV turn-off threshold | | 9.6 | 10.1 | 10.6 | V | | V _{BS_hys} | V _{BS} UV hysteresis | | 0.5 | 1 | 1.6 | V | | V _{BS_th(on)} | V _{BS} UV turn-on threshold | | 10.1 | 11 | 11.9 | V | | V _{BS_th(off)} | V _{BS} UV turn-off threshold | | 9.1 | 10 | 10.9 | V | | I _{QBSU} | Under voltage V _{BS} quiescent current | V _{BS} = 9 V, HINx ⁽¹⁾ = 5 V | | 55 | 75 | μA | | I _{QBS} | V _{BS} quiescent current | V _{CC} = 15 V, HINx ⁽¹⁾ = 5 V | | 125 | 170 | μA | | I _{qccu} | Under voltage quiescent supply current | V _{CC} = 9 V, HINx ⁽¹⁾ = 0 V | | 190 | 250 | μA | | I _{qcc} | Quiescent current | V _{CC} = 15 V, HINx ⁽¹⁾ = 0 V | | 560 | 730 | μA | | R _{DS(on)} | BS driver ON resistance | | | 150 | | Ω | | | | Low-side | | | | | | V _{CC_hys} | V _{CC} UV hysteresis | | 1.1 | 1.4 | 1.6 | V | | V _{CCL_th(on)} | V _{CCL} UV turn-on threshold | | 10.4 | 11.6 | 12.4 | V | | V _{CCL_th(off)} | V _{CCL} UV turn-off threshold | | 9.0 | 10.3 | 11 | V | | | | V _{CC} = 10 V, | | | | | | I _{qccu} | Under voltage quiescent supply current | \overline{SD} pulled to 5 V through R _{SD} = 10 k Ω , | | 600 | 800 | μA | | | | $CIN = LINx^{(1)} = 0 V$ | | | | | | l | Quiescent current | $V_{CC} = 15 \text{ V}, \overline{SD} = 5 \text{ V},$ | | 700 90 | 900 | μA | | I _{qcc} | Quissoni ourioni | $CIN = LINx^{(1)} = 0 V$ | | 7.00 | | μΑ | | V_{SSD} | Smart SD unlatch threshold | | 0.5 | 0.6 | 0.75 | V | | I _{SDh} | SD logic "1" input bias current | <u>SD</u> = 5 V | 25 | 50 | 70 | μA | | I _{SDI} | SD logic "0" input bias current | <u>SD</u> = 0 V | | | 1 | μA | ^{1.} Applied between HINx, LINx and GND for x = U, V, W. DS10548 - Rev 2 page 8/23 Table 9. Temperature sensor output | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |----------------------|--|------------------------|-------|------|-------|------| | V _{TSO} | Temperature sensor output voltage | T _J = 25 °C | 0.974 | 1.16 | 1.345 | V | | I _{TSO_SNK} | Temperature sensor sink current capability | | | 0.1 | | mA | | I _{TSO_SRC} | Temperature sensor source current capability | | 4 | | | mA | Table 10. Sense comparator (V_{CC} = 15 V, unless otherwise is specified) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |------------------|---|--|------|------|------|------| | I _{CIN} | CIN input bias current | V _{CIN} = 1 V | -0.2 | | 0.2 | μΑ | | V _{ref} | Internal reference voltage | | 460 | 510 | 560 | mV | | V _{OD} | Open-drain low level output voltage | I _{od} = 5 mA | | | 500 | mV | | tcin_sd | C _{IN} comparator delay to \overline{SD} | \overline{SD} pulled to 5 V through R _{SD} = 10 kΩ;
measured applying a voltage step 0-1 V to pin CIN;
50% CIN to 90% \overline{SD} | 240 | 320 | 410 | ns | | SR _{SD} | SD fall slew rate | \overline{SD} pulled to 5 V through R _{SD} = 10 k Ω ;
C _L = 1 nF through \overline{SD} and ground;
90% \overline{SD} to 10% \overline{SD} | | 25 | | V/µs | The comparator stays enabled even if $V_{\mbox{\footnotesize{CC}}}$ is in the UVLO condition but higher than 4 V. DS10548 - Rev 2 page 9/23 ## 4 Fault management The device integrates an open-drain output connected to the \overline{SD} pin. As soon as a fault occurs, the open-drain is activated and the LVGx outputs are forced low. Two types of fault can be identified: - Overcurrent (OC) sensed by the internal comparator (see more detail in Section 4.1 Smart shutdown function); - Undervoltage on supply voltage (V_{CC}) Each fault enables the SD open drain for a different time, as described in the following table. Symbol **Parameter** Event time (1) SD open-drain enable time result (1)(2) ≤ 24 µs 24 µs OC Over-current event > 24 µs OC time ≤ 70 µs 70 µs > 70 µs **UVLO** Under-voltage lockout event **UVLO** time until the VCC_LS exceeds the VCC LS UV turn ON threshold Table 11. Fault timing - 1. Typical value (-40 °C $\leq T_{.1} \leq +125$ °C). - 2. Without contribution of the RC network on SD. Actually, the device remains in a fault condition (\overline{SD}) at low logic level and LVGx outputs disabled) for a time also depending on the RC network connected to the \overline{SD} pin. The network generates a time contribution that is added to the internal value. Figure 4. Overcurrent timing (without contribution of the RC network on SD) GIPG120520141638FSR DS10548 - Rev 2 page 10/23 GIPG120520141644FSR Figure 5. UVLO timing (without contribution of the RC network on $\overline{\text{SD}}$) DS10548 - Rev 2 page 11/23 #### 4.1 Smart shutdown function The device integrates a comparator committed to the fault sensing function. The comparator input can be connected to an external shunt resistor in order to implement a simple overcurrent detection function. The output signal of the comparator is fed to an integrated MOSFET with the open drain output available on the SD input. When the comparator triggers, the device is set in shutdown state and its outputs are all set to low level. Figure 6. Smart shutdown timing waveforms in case of overcurrent event R_{ON_OD} = V_{OD} /5 mA, see Table 10. Sense comparator (V_{CC} = 15 V, unless otherwise is specified); R_{PD_SD} (typ.) = 5 V/I_{SDh} DS10548 - Rev 2 page 12/23 In common overcurrent protection designs, the comparator output is usually connected to the \overline{SD} input and an RC network is connected to this \overline{SD} line in order to provide a mono-stable circuit which implements a protection time that follows the fault condition. As opposed to common fault detection systems, the device smart shutdown architecture allows the immediate turn-off of output gates driver in case of fault, by minimizing the propagation delay between the fault detection event and the actual switching off of the outputs. In fact, the time delay between the fault and the turning off of the outputs is no longer dependent on the RC value of the external network connected to the pin. In the smart shutdown circuitry, the fault signal has a preferential path which directly switches off the outputs after the comparator triggering. At the same time, the internal logic turns on the open-drain output and holds it on until the \overline{SD} voltage goes below the V_{SSD} threshold and the t_{oc} time is elapsed. The driver outputs restart following the input pins as soon as the voltage at the \overline{SD} pin reaches the higher threshold of the \overline{SD} logic input. The smart shutdown system provides the possibility to increase the time constant of the external RC network (i.e., the disable time after the fault event) up to very high values without increasing the delay time of the protection. DS10548 - Rev 2 page 13/23 # 5 Temperature monitoring solutions ### 5.1 TSO output The device integrates a temperature sensor. A voltage proportional to the die temperature is available on the TSO pin. When this function is not used, the pin can be left floating. Figure 7. V_{TSO} output characteristics vs LVIC temperature DS10548 - Rev 2 page 14/23 # 6 Application circuit example Fault MICROCONTROLLER AMG171020161050SA Figure 8. Application circuit example Application designers are free to use a different scheme according to the device specifications. DS10548 - Rev 2 page 15/23 #### 6.1 Guidelines - 1. Input signals HIN, LIN are active-high logic. A 100 k Ω (typ.) pull-down resistor is built-in for each input pin. To prevent input signal oscillations, the wiring of each input should be as short as possible and the use of RC filters (R₁, C₁) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins. - The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Besides, to reduce any high-frequency switching noise distributed on the power lines, a decoupling capacitor C₂ (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to each V_{cc} pin and in parallel with the bypass capacitor. - 3. The use of an RC filter (R_{SF} , C_{SF}) prevents protection circuit malfunctions. The time constant ($R_{SF} \times C_{SF}$) should be set to 1 μ s and the filter must be placed as close as possible to the CIN pin. - 4. The SD is an input/output pin (open-drain type if it is used as output). It should be pulled up to a power supply (i.e., MCU bias at 3.3/5 V) by a resistor value, which can keep the I_{od} no higher than 5 mA (V_{OD} ≤ 500 mV when open-drain MOSFET is ON). The filter on SD should be sized to get a desired re-starting time after a fault event and placed as close as possible to the SD pin. - 5. A decoupling capacitor C_{TSO} between 1 nF and 10 nF can be used to increase the noise immunity of the TSO thermal sensor; a similar decoupling capacitor C_{OT} (between 10 nF and 100 nF) can be implemented if the NTC thermistor is available and used. In both cases, their effectiveness is improved if these capacitors are placed close to the MCU. - 6. The decoupling capacitor C_3 (100 to 220 nF with low ESR and low ESL) in parallel with each C_{boot} filters high-frequency disturbances. Both C_{boot} and C_3 (if present) should be placed as close as possible to the U,V,W and V_{boot} pins. Bootstrap negative electrodes should be connected to the U,V,W terminals directly and separated from the main output wires. - 7. To prevent overvoltage on the V_{CC} pin, a Zener diode (Dz1) can be used. Similarly on the V_{boot} pin, a Zener diode (Dz2) can be placed in parallel with each C_{boot}. - 8. The use of the decoupling capacitor C_4 (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{Vdc} prevents surge destruction. Both capacitors C_4 and C_{Vdc} should be placed as close as possible to the IPM (C_4 has priority over C_{Vdc}). - 9. By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible. - 10. Low inductance shunt resistors should be used for phase leg current sensing. - 11. In order to avoid malfunctions, the wiring on N pins, the shunt resistor and PWR_GND should be as short as possible. - 12. The connection of the SGN_GND to the PWR_GND at one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation. These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note. Table 12. Recommended operating conditions | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-------------------|------------------------------------|--|------|------|------|------| | V _{PN} | Supply voltage | Applied between P-Nu, N _V , N _w | | 300 | 400 | V | | V _{CC} | Control supply voltage | Applied between V _{CC} -GND | 13.5 | 15 | 18 | V | | V _{BS} | High-side bias voltage | Applied between V_{BOOTi} -OUT _i for i = U, V, W | 13 | | 18 | V | | t _{dead} | Blanking time to prevent arm-short | For each input signal | 1.0 | | | μs | | f _{PWM} | PWM input signal | -40 °C < T _C < 100 °C
-40 °C < T _J < 125 °C | | | 20 | kHz | | T _C | Case operation temperature | | | | 100 | °C | DS10548 - Rev 2 page 16/23 ## 7 Electrical characteristics (curves) 2.0 $V_{CE}(V)$ 1.5 6 V_{CE(sat)} vs collector current V_{CE(sat)} (V) (V) (SAT) (IGBT251020161103VCEC (V) (V) (SAT) (IGBT251020161103VCEC (V) (SAT) (SAT) (IGBT251020161103VCEC (V) (IGBT251020161103VCE DS10548 - Rev 2 page 17/23 DS10548 - Rev 2 page 18/23 ## 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. #### 8.1 SDIP2F-26L type L2 package information Figure 16. SDIP2F-26L type L2 package outline 8450803_5_type_L2 DS10548 - Rev 2 page 19/23 Table 13. SDIP2F-26L type L2 package mechanical data | Ref. | Dimensions (mm) | | | | |------|-----------------|-------|-------|--| | Kei. | Min. | Тур. | Max. | | | А | 37.50 | 38.00 | 38.50 | | | A1 | 0.97 | 1.22 | 1.47 | | | A2 | 0.97 | 1.22 | 1.47 | | | A3 | 34.70 | 35.00 | 35.30 | | | С | 1.45 | 1.50 | 1.55 | | | В | 23.50 | 24.00 | 24.50 | | | B1 | | 12.00 | | | | B2 | 13.90 | 14.40 | 14.90 | | | В3 | 28.90 | 29.40 | 29.90 | | | С | 3.30 | 3.50 | 3.70 | | | C1 | 5.00 | 5.50 | 6.00 | | | C2 | 13.50 | 14.00 | 14.50 | | | E2 | | 1.80 | | | | е | 3.356 | 3.556 | 3.756 | | | e1 | 1.578 | 1.778 | 1.978 | | | e2 | 7.42 | 7.62 | 7.82 | | | e3 | 4.88 | 5.08 | 5.28 | | | e4 | 2.34 | 2.54 | 2.74 | | | f | 0.45 | 0.60 | 0.75 | | | f1 | 0.35 | 0.50 | 0.65 | | | F | 1.95 | 2.10 | 2.25 | | | F1 | 0.95 | 1.10 | 1.25 | | | R | 1.55 | 1.575 | 1.60 | | | Т | 0.375 | 0.400 | 0.425 | | | V | 0° | | 5° | | DS10548 - Rev 2 page 20/23 # **Revision history** **Table 14. Document revision history** | Date | Revision | Changes | | |-------------|----------|--|--| | 18-Sep-2020 | 1 | First release. | | | 01-Jun-2021 | 2 | Updated Features in cover page. Updated Table 4. Total system. Minor text changes. | | DS10548 - Rev 2 page 21/23 ## **Contents** | 1 | Internal schematic diagram and pin configuration | | | | | | |-----|--|--|----|--|--|--| | 2 | Abs | Absolute maximum ratings | | | | | | | 2.1 | Thermal data | 5 | | | | | 3 | Elec | Electrical characteristics | | | | | | | 3.1 | Inverter part | 6 | | | | | | 3.2 | Control/protection parts | 8 | | | | | 4 | Fau | It management | 10 | | | | | | 4.1 | Smart shutdown function | 12 | | | | | 5 | Tem | Temperature monitoring solutions | | | | | | | 5.1 | TSO output | 14 | | | | | 6 | Арр | Application circuit example | | | | | | | 6.1 | Guidelines | 16 | | | | | 7 | Elec | ctrical characteristics (curves) | 17 | | | | | 8 | Pac | Package information | | | | | | | 8.1 | SDIP2F-26L type L2 package information | 19 | | | | | Rev | vision | history | 21 | | | | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics - All rights reserved DS10548 - Rev 2 page 23/23