

Rad-Hard 100 V, 12 A, P-channel Power MOSFET

The case is not connected to any lead

Product status link STRH12P10

Features

V _{DS}	I _D	I _D R _{DS(on)} typ.	
100 V	12 A	265 mΩ	40 nC

- Fast switching
- 100% avalanche tested
- Hermetic package
- 100 krad TID
- · SEE radiation hardened

Description

The STRH12P10 is a P-channel Power MOSFET developed with the Rad-hard STripFET technology in hermetic TO-257AA package.

Specifically designed to sustain Total Ionized Dose and immunity to heavy ion effects, it is qualified as per ESCC 5205/029 detail specification. In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Product summary

	Product summary					
Part numbers	Quality level	ESCC part number	Package	Lead finish	Radiation level	
STRH12P10GY1	Engineering model	-		Gold	-	
STRH12P10GYG	ESCC		TO-257AA		100 krad	
STRH12P10GYT	ESCC flight	5205/029		Solder dip	100 krad	

Note: See Table 8 for ordering information.

1 Electrical ratings

 T_C = 25 °C unless otherwise specified

Table 1. Absolute maximum ratings (pre-irradiation)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	100	V
V _{GS}	Gate-source voltage	±18	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	12	Α
iD.	Drain current (continuous) at T _{case} = 100 °C	7.5	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	48	Α
P _{TOT}	Total power dissipation at T _{case} = 25 °C	75	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	2.4	V/ns
T _{stg}	T _{stg} Storage temperature range		°C
Tj	Max. operating junction temperature range	150	°C

- 1. Rated according to the $R_{thj\text{-case}} + R_{thc\text{-s}}$
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 12~A$, $di/dt \le 36~A/\mu s$, $V_{DD} = 80~\% V_{(BR)DSS}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max.		°C/W
R _{thc-s}	R _{thc-s} Thermal resistance case-sink typ.		°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	6	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V) at 110 °C	112	mJ
E _{AR}	Repetitive pulse avalanche energy $(V_{DS} = 50 \text{ V}, I_{AR} = 6 \text{ A}, f = 10 \text{ KHz},$ $T_J = 25 ^{\circ}\text{C}, \text{ duty cycle} = 50\%)$	17	mJ
⊢AR	Repetitive pulse avalanche energy $(V_{DS} = 50 \text{ V}, I_{AR} = 6 \text{ A}, f = 10 \text{ KHz},$ $T_J = 110 ^{\circ}\text{C}, \text{ duty cycle} = 50\%)$	5.5	mJ

1. Maximum rating value.

DS8699 - Rev 8 page 2/14

2 Electrical characteristics

For the P-channel MOSFET polarity of voltages and current has to be reversed.

Table 4. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max.	Unit			
I _{DSS}	Zero gate voltage drain current	80% V _{(BR)DSS}		10	μA			
		V _{GS} = 16 V		100				
	Cata hadu laakana ayyyant	V _{GS} = -16 V	-100		^			
I _{GSS}	Gate body leakage current	V _{GS} = 16 V, T _C = 125 °C		200	nA 200			
		V _{GS} = -16 V, T _C = 125 °C	-200					
V _{(BR)DSS} ⁽¹⁾	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	100		V			
		$V_{DS} = V_{GS}$, $I_D = 1$ mA	2.0	4.5				
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = 125$ °C	1.6	3.8	V			
		V _{DS} = V _{GS} , I _D = 1 mA, T _C = -55 °C	2.2	5.2				
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V, I _D = 12 A		0.30	Ω			
C _{iss} ⁽²⁾	Input capacitance		940	1410	pF			
C _{oss} (2)	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$		205	pF			
C _{rss} (2)	Reverse transfer capacitance			85	pF			
Qg	Total gate charge	V _{DD} = 50 V, I _D = 12 A, V _{GS} = 12 V		48	nC			
Q _{gs}	Gate-to-source charge			6.5	nC			
Q _{gd}	Gate-to-drain ("Miller") charge			13	nC			
t _{d(on)}	Turn-on delay time			13	ns			
t _r	Rise time			31	ns			
t _{d(off)}	Turn-off delay time	V_{DD} = 50 V, I_{D} = 6 A, R_{G} = 4.7 Ω , V_{GS} = 12 V	18	42	ns			
t _f	Fall time		3.5	10.5	ns			
I _{SD}	Source-drain current			12	Α			
I _{SDM} ⁽³⁾	Source-drain current (pulsed)			48	Α			
.,		I _{SD} = 12 A, V _{GS} = 0 V		1.5				
V_{SD}	Forward on voltage	I _{SD} = 12 A, V _{GS} = 0 V, T _C = 125 °C		1.25	V			
t _{rr}	Reverse recovery time		178	258	ns			
Q _{rr}	Reverse recovery charge	I_{SD} = 12 A, di/dt = 40 A/µs, V_{DD} = 60 V, T_j = 25 °C		2560	nC			
I _{RRM}	Reverse recovery current			24	Α			
t _{rr}	Reverse recovery time		225	335	ns			
Q _{rr}	Reverse recovery charge	I _{SD} = 12 A, di/dt = 40 A/μs, V _{DD} = 60 V, T _J = 150 °C	2650	3950	nC			
I _{RRM}	Reverse recovery current		18.5	28.5	Α			

^{1.} This rating is guaranteed at $T_J \le 25$ °C (see Figure 9. Normalized $V_{(BR)DSS}$ vs temperature).

DS8699 - Rev 8 page 3/14

^{2.} Not tested, guaranteed by process.

^{3.} Pulse width limited by safe operating area

3 Radiation characteristics

This products is guaranteed in radiation as per ESCC 5205/029 and ESCC 22900 specification at 100 krad. Each lot tested in radiation is accepted according to the characteristics as per Table 5.

3.1 Total dose radiation (TID) testing

The bias with VGS = + 15 V and VDS = 0 V is applied during irradiation exposure.

The parameters listed in Table 5 are measured:

- Before irradiation
- After irradiation
- After 24 hrs at room temperature
- after 168 hrs at 100 °C anneal

Table 5. Post-irradiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Drift values Δ	Unit	
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% V _{(BR)DSS}	+1	μA	
1	Coto hadulaalaana surrant	V _{GS} = 12 V	1.5	nA	
I _{GSS}	Gate body leakage current	V _{GS} = -12 V	, I _D = 1 mA +5%		
V _{(BR)DSS}	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	+5%	V	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	+ 150%	V	
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 12 A	-4% / +35%	Ω	
Qg	Total gate charge		-15% / +5%		
Q _{gs}	Gate-to-source charge	$V_{DS} = 50 \text{ V, } I_{G} = 1 \text{ mA, } V_{GS} = 12 $ V, $I_{DS} = 12 \text{A}$	-5% / +200%	nC	
Q _{gd} Gate-to-drain charge			-10% / +100%		
V _{DS} (1)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 12 A	±5%	V	

^{1.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

DS8699 - Rev 8 page 4/14

3.2 Single event effect SOA

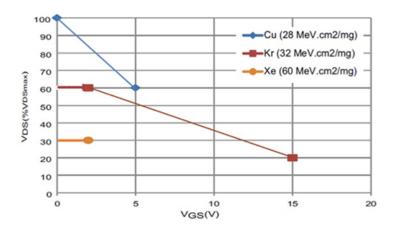
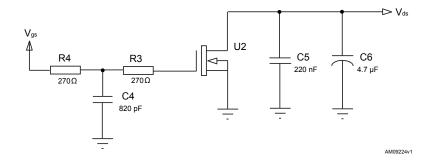
This products is extremely resistant to heavy ion environment for single event effect (as per MIL-STD-750E, method 1080, bias circuit of Figure 2).

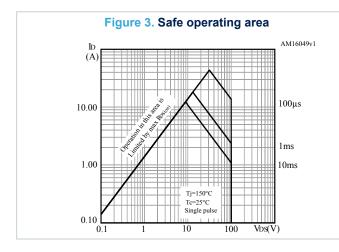
SEB and SEGR tests are performed with a fluence of 3e+5 ions/cm² with the following acceptance criteria:

- SEB (test): drain voltage checked, trigger level is set to V_{DS} = 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 200 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 100 nA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².

lon	Let (Mev/(mg/cm²)	Energy (MeV)	Range (μm)
Kr	32	768	94
KI	32	756	92
Cu	28	285	43
Xe	60	1217	89

Table 6. Single event effect (SEE), safe operating area (SOA)


Figure 2. Single event effect, bias circuit

DS8699 - Rev 8 page 5/14

4 Electrical characteristics (curves)

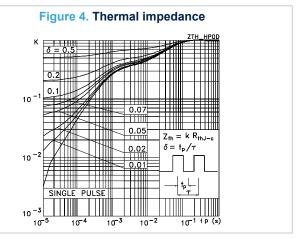
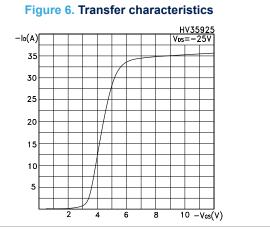
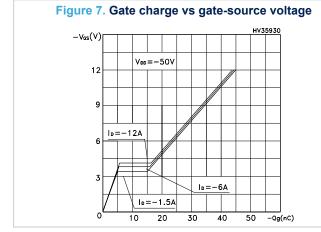
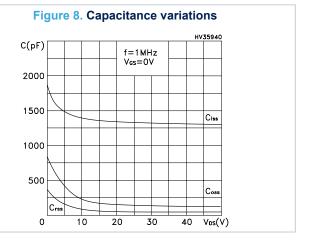





Figure 5. Output characteristics

-lo(A)
-lo

DS8699 - Rev 8 page 6/14

Figure 9. Normalized V_{(BR)DSS} vs temperature

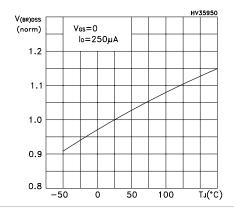


Figure 10. Static drain-source on-resistance

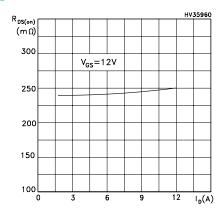


Figure 11. Normalized gate threshold voltage vs temperature

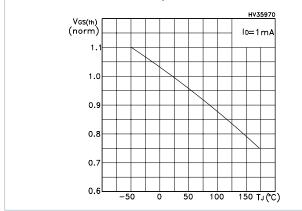


Figure 12. Normalized on-resistance vs temperature

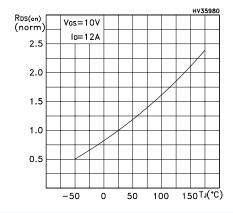
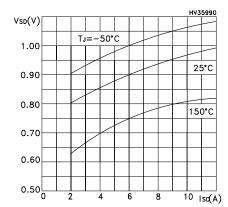
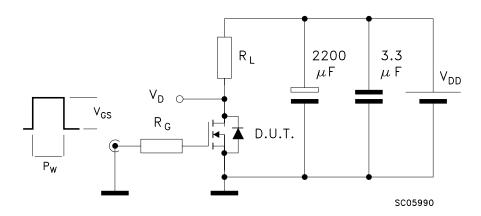



Figure 13. Source drain-diode forward characteristics



DS8699 - Rev 8 page 7/14

Test circuits 5

Figure 14. Switching times test circuit for resistive load

Note: $Max driver V_{GS} slope = 1V/ns (no DUT)$

Figure 15. Source drain diode waveform

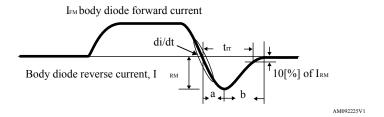
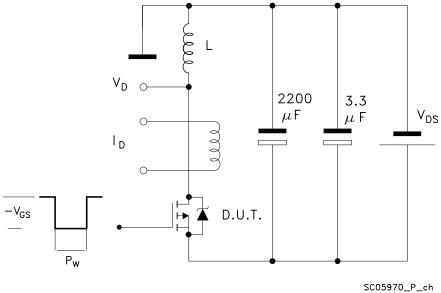
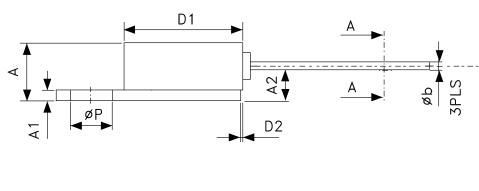
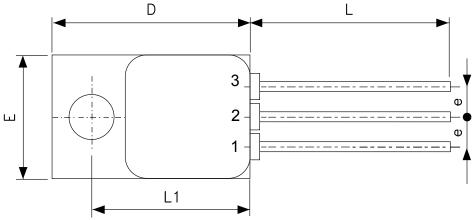
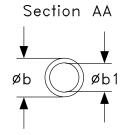



Figure 16. Unclamped inductive load test circuit (single pulse and repetitive)

DS8699 - Rev 8 page 8/14




6 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 TO-257AA package information

Figure 17. TO-257AA package outline

Pin 1: Drain Pin 2: Source Pin 3: Gate

0117268 E

DS8699 - Rev 8 page 9/14

Table 7. TO-257AA package mechanical data

Cumbala	D	imensions (m	m)	D	imensions (inche	es)
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.83		5.08	0.190		0.200
A1	0.89		1.14	0.035		0.045
A2		3.05			0.120	
b	0.64		1.02	0.025		0.040
b1	0.64	0.76	0.89	0.025	0.030	0.035
D	16.38		16.89	0.645		0.665
D1	10.41		10.92	0.410		0.430
D2	-	-	0.97			0.038
е		2.54			0.100	
E	10.41		10.67	0.410		0.420
L	15.24		16.51	0.600		0.650
L1	13.39		13.64	0.527		0.537
Р	3.56		3.81	0.140		0.150

Note: The case is not connected to any lead.

DS8699 - Rev 8 page 10/14

7 Order codes

Table 8. Ordering information

Part number	Agency specification	Quality level	Radiation level	Package	Weight	Lead finish	Marking ⁽¹⁾	Packing
CTDU42D40CV4		Engineering					STRH12P10GY1	
STRH12P10GY1		model	-			Gold	+ BeO	
STRH12P10GYG	5205/029/01		100 kmd TO 25744 F a		Gold	520502901R	Ctrin nools	
SIRHIZPIUGIG	5205/029/01		257AA 5 g		+ BeO	Strip pack		
STRH12P10GYT	ESCC flight 100 krad		Solder	520502902R				
31KH12P10G11	5205/029/02		100 krad			dip	+ BeO	

Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: STlogo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about the specific conditions for products in die form.

DS8699 - Rev 8 page 11/14

8 Other information

8.1 Traceability information

Date code information is described in the table below.

Table 9. Date codes

Model	Date code
EM	3yywwN
ESCC	yywwN

^{1.} yy = year, ww = week number, N = lot index in the week.

8.2 Documentation

Table 10. Documentation provided for each type of product

Quality level	Radiation level	Documentation
Engineering model	-	Certificate of conformance
		Certificate of conformance
ESCC	100 krad	ESCC qualification maintenance lot reference
		Radiation data at 25 / 50 / 70 / 100 krad at 0.1 rad / s.

DS8699 - Rev 8 page 12/14

Revision history

Table 11. Document revision history

Date	Version	Changes
07-Oct-2011	1	First release.
24-Jun-2013	2	Document status promoted form preliminary data to production data.
		- Modified: Figure 1
		- Modified: EAS, EAR parameter and values in Table 4
		- Modified: IGSS, and added note 1 in Table 5
		- Added: note 1 in Table 6
		- Modified: trr, qrr and IRRM parameter in Table 8
		 Modified: RDS(on) test conditions in Table 9, the entire test conditions in Table 10
		- Modified: Figure 4
25-Nov-2013	3	- Modified: package drawing and Figure 1.
18-Dec-2013	4	- Updated Table 1: Device summary and Table 14: Ordering information.
		- Updated Section : Total dose radiation (TID) testing.
19-Jan-2015	5	- Updated Table 13.: TO-257AA mechanical data
		- Minor text changes
02-May-2019	6	Updated Table 7. Pre-irradation source drain diode and Table 4. Preirradiation on/off states.
		Minor text changes
29-Feb-2020	7	Updated Table 10 and TO-257 AA package information.
21-Jan-2021	8	Updated Product summary, Table 4, Table 5, Table 6, Figure 1, Table 8 and Table 10.

DS8699 - Rev 8 page 13/14

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS8699 - Rev 8 page 14/14